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We carry out a general analysis of the representations of the superconformal algebras
SU(2, 2/N), OSp(g4, R), and OSp(872N) and give their realization in superspace.

We present a construction of their UIRs by multiplication of the different types of mass-
less superfields (“supersingletons”). Particular attention is paid to the so-called “short
multiplets.” Representations undergoing shortening have “protected dimension” and
may correspond to BPS states in the dual supergravity theory in anti-de Sitter space.
These results are relevant for the classification of multitrace operators in boundary con-
formally invariant theories as well as for the classification of AdS black holes preserving
different fractions of supersymmetry.

1. INTRODUCTION

The study of superconformal algebras has recently become of central impor-
tance because of their duale’in describing the gauge symmetries of supergrav-
ity in anti-de Sitter bulk and the global symmetries of the boundary field theory
(Gubseret al., 1998; Maldacena, 1998; Witten, 1998).

A special class of configurations that are particularly relevant are the so-
called BPS states, that is, dynamical objects corresponding to representations that
undergo “shortening.”

These representations can only occur when the conformal dimension of a
(super)primary operator is “quantized” in terms of the R symmetry quantum num-
bers and they are at the basis of the so-called “nonrenormalization” theorems of
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supersymmetric quantum theories (Ferraral., 1974; lliopoulous and Zumino,
1974; Wess and Zumino, 1974).

There exist different methods of constructing the UIRs of superconformal al-
gebras. One is the so-called oscillator construction of the Hilbert space in which a
given UIR acts (Bars and@aydin, 1983; Duff, 1999; @iaydin, 1982; @faydin
and Hyun, 1988; @Gnaydin and Marcus, 1985;uBaydinet al., 1998, 1999;
Glinaydin and Saclioglu, 1982a,b; Nicolai, 1984). Another one, more appropriate
to describe field theories, is the realization of such representations on superfields
defined in superspaces (Ferratal., 1974; Salam and Strathdee, 1974). The lat-
ter are “supermanifolds,” which can be regarded as the quotient of the conformal
supergroup by some of its subgroups.

In the case of ordinary superspace the subgroup in question is the supergroup
obtained by exponentiating a nonsemisimple superalgebra, which is the semidirect
product of a super-Poinaagraded Lie algebra with dilatation (SO(1, 1)) and the
R symmetry algebra. This is the superspace appropriate for non-BPS states. Such
states correspond to bulk massive states, which can have “continuous spectrum”
of the AdS mass (or, equivalently, of the conformal dimension of the primary
fields).

BPS states are naturally associated to superspaces with lower number of
“odd” coordinates and, in most cases, with some internal coordinates of a coset
spaceG/H. HereG is the R symmetry group of the superconformal algebra, that
is, the subalgebra of the even part that commutes with the conformal algebra of
space-time, andH is some subgroup d& having the same rank &3.

Such superspaces are called “harmonic” (Galpetial., 1984) and they are
characterized as having a subset of the initial odd coordifatBise complemen-
tary number of odd variables determines the fraction of supersymmetry preserved
by the BPS state. If a BPS state preserdesupersymmetries then tlis of the
associated harmonic superspace will transform under some UHR of

For 1/2 BPS states, that is, states with maximal supersymmetry, the super-
space involves the minimal number of odd coordinates (half of the original one)
and Hg is then a maximal subgroup &. On the other hand, for states with the
minimal fraction of supersymmetiylx reduces to the “maximal torus” whose Lie
algebra is the Cartan subalgebraGaf

It is the aim of this paper to give a comprehensive treatment of BPS states
related to “short representations” of superconformal algebras for the cases that
are most relevant in the context of the AAS/CFT correspondence, that is, for
d =3(N =8),d =6, andd = 4 (for arbitrary N). The underlying conformal
field theories correspond to world-volume theoriedNgfcopies ofM,, Ms, and
D3 branes in the largBl. limit (Aharony et al,, 1998; Aharonyet al,, 1998; Claus
etal, 1998; Ferrarat al, 1998; Halyo, 1998; Leigh and Rozsli, 1998; Minwalla,
1998) that are “dual” to AdS supergravities describing the horizon geometry of
the branes (Aharongt al,, 2000).
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Some of the results presented in this paper have already appeared elsewhere
(Andrianopoli, 1998; Ferrara and Sokatchev, 1999, 2000, 206re we give
a systematic and unified treatment of the BPS states corresponding to the three
superconformal algebras discussed previously. The method we use in developed in
full detail in the case ofl = 4 superconformal algebra SU(2,/2) in Sections 2-5.
In Section 2 we carry out an abstract analysis of the conditions for Grassmann (G)
analyticity (Galperinet al,, 1981) (the generalization of the familiar concept of
chirality (Ferraraetal, 1974)) in a superconformal context. We find the constraints
on the conformal dimension and R symmetry quantum numbers of a superfield
following from the requirement that it does not depend on one or more Grassmann
variables. Introducing G analyticity in a traditional superspace cannot be done with-
outbreaking the R symmetry. The latter can be restored by extending the superspace
by harmonic variables (Bandos, 1988; Galpetial., 1984; Galperiret al,, 1985;
Galperinetal, 1987; Ivano\et al,, 1985; Kallosh, 1985; Rosly, 1983, 1985; Rosly
and Schwarz, 1986) parametrizing the coS¢Hy . In Section 3 the l{, p, q)
harmonic superspaces (Galpeeinal, 1987; Hartwell and Howe, 1995a,b) rele-
vant to the description of BPS states preserving q/2N supersymmetries are
reviewed. In Section 4 the massless UIRs (“supersingleton” multiplets) (Binegar,
1986; Dobrev and Petkova, 1985, 1987; Flato and Fronsdal, 1978, 1980, 1981,
1986; Fronsdal, 1982) of SU(2/Rl) are considered, first as constrained super-
fields in ordinary superspace (Howeal.,, 1981, Siegel, 1981) and then, for a part
ofthem, as, p, N — p) G-analytic harmonic superfields (Galpeetal., 1984;
Hartwell and Howe, 1995a,b). In Section 5 we use supersingleton multiplication
to construct UIRs of SU(2,/A). We show that in this way one can reproduce the
complete classification of UIRs of Dobrev and Petkova (1985, 1987). We give the
fulllist of BPS states obtained by multiplying chiral and G-analytic supersingletons
as well as the restricted classes of BPS states obtained from one type of G-analytic
supersingleton alone. We also discuss different kinds of shortening that certain su-
perfields (not of the BPS type) may undergo. In Sections 6 and 7 we apply the same
method to extend these resultsite- 6 andd = 3 for the superalgebras of the max-
imal supersymmetries, that is, OSPp(8N) and OSp(84, R). We conclude the
paper by listing the various BPS states in the physically relevant cases M3,
andMs branes horizon geometry where only one type of supersingletons appears.

Applications of the present results are found (Andrianogolal, 1999;
Ferrara and Zaffaroni, 1999) in the classification of multitrace operators in four-
dimensionaN = 4 SU(N;) Yang—Mills theory (Bianchi and Kovacs, 1999; Bianchi
et al, 1999; Chalmers and Schalm, 1999; D’Holktral., 1999; D’'Hokeret al.,
1999; Skiba, 1999), dual to type 11B supergravity on AdSS® (Maldacena, 1998,
1999).

6The new results were reported by one of us at the Workshop on “Strings, Branes and M-theory” at
the CIT-USC Center for Theoretical Physics, Los Angeles, California on April 5 and 7, 2000.
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Another area of interestis the classification of AdS black holes (Beletilt,
1998; Chambliret al., 1999; Duff and Liu, 1999; Hawkingt al., 1999) according
to the fraction of supersymmetry preserved by the black hole background.

In a parallel analysis with black holes in asymptotically flat background
(Ferrara and @Griaydin, 1998; Ferrara and Maldacena, 1998), the AAS/CFT corre-
spondence predicts that such BPS states should be dual to superconformal states
undergoing “shortening” of the type discussed here.

2. GRASSMANN ANALYTICITY AND CONFORMAL
SUPERSYMMETRY

Inthis section we shall study the realization$ot 4 N-extended conformal
supersymmetry SU(2,/A) on superfields depending on a subset of thieatid
variables. Such superfields will be called G analytic.

The nonvanishing (anti)commutation relations involving the odd generators
of the superalgebra SU(2/R) are given below:

{QL. Qaj} = 28} (0" )i Pu,
{84, S} = 25)(0")aa Ko,
{QL, S} = =8{(0")iMy — 45LT] — 2885} (R+1iD),
[QL. Ku] = —(00)eS",  [Qair Kul = (0,)ac S
[Si, P = (0 QF,  [S Pu] = (0 Q" (2.1)

Here the odd generators are&Q!,, Qs = (Q},) of Poincag’ supersymmetry and
S, S('-X = (Sui)' of special conformal supersymmetry. The even generators are as
follows: P, of translationsK,, of conformal boostsM,,, = —M,,, of the Lorentz
group, D of diIatations,Tji of SU(N), andR of U (1) (“R charge”).

Further, the Lorentz and SM( generators commute wit as follows:

1 — 1 3 —
[M;wa Qa] = _E(Uﬂv)gQﬁv [M;wr Qd] = z(&uv)gQB! (22)

. 1 - 1
(7, Q) =8]Q - 58Q" [T}, Q= —8Qj + Q. (23)

and similarly forS. Next, the commutators dp and S with the dilatation and R
charge generators are given below:

[D,Ql= Q. [D,Ql= &

7Two—componen_t spinor indices are raised and lowered with the help of the Levi-Civita tensor:
Ve = ePyp, XY = Py Vo = cap¥? xa = eapxli e = ey = —e? = e = 1.
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i <
[D,S]:—ES, [D.§ =35 (2.4)
ro="Fo  RA=-_TG
4—N _  4-N-=

Finally, the SUN) generators |, (T/)T, >N, T = 0form the algebra

[T/, T¥] = 8T/ — 5/ T (2.6)
The rest of the superalgebra SU(ZN) is the conformal algebra dfl, P, K, D,
which will not be needed here.

The superspace traditionally used for the realization of SU(R,)Zas well
as for Poincag’'supersymmetry) is given by the real coset

R42N.2N _ SU(2, ZN)
T (K,SSM,D,T, R}

It is parametrized by four even coordinatésand 2N left-handed odd spinor co-
ordinate®y in the fundamental of SU) together with the Rl right-handed com-

plex conjugatega' 6. The superalgebra is realized on superfiehg, 6, 9)
defined as functions in the coset (2.7). The generators of the coset denominator
K,S S M, D, T, Ract on the superspace coordinates as well as on the external
indices of the superfield. The latter action is given by the matrix parts of these gener-
ators,K,, —>ku,Sx|—>anSo,—> , My, - my,, D —if, T'—>t; R—>r238
According to the definition of a (super)conformal primary field, the matrix parts
of the transitive generatois and S vanish:

saiq>=§(2(l)=kﬂq>=0 (28)

= (x*, 68, 64). 2.7)

(the third constraint follows from the first two, see (2.1)). The homogeneous action
of the remaining onedl, |, r, t, on the superfield and, in particular, on its lowest
componentp(x) = ®|y_5_o defines the latter as an irrep of SO(1, 2)SL(2,

C) x U(1) x SU(N) with the following quantum numbers:

D(¢; j1, Jo;r @4, ..., an-1) (2.9)

wheret is the conformal dimension; andj, are the two Lorentz quantum numbers
(“spins”), r is the R charge and,, ..., ay_1 are the SUK) Dynkin labels.

8We assign the R charge = —(4 — N)/2N to the left-handed Grassmann coordinat&sn order
to be consistent with the convention that chiral superfidi{ft) haver = —¢ for anyN (see (2.13)).
Note that forN = 4,ry = 0 and the quantum number becomes a “central charge” (Binegar, 1986;
Dobrev and Petkova, 1985, 1987). In this case one refers to the PSM4jZlgebra for = 0 and
to the PU(2, 24) algebra for # 0.



940 Ferrara and Sokatchev

2.1. Chiral Superfields

The superalgebra SU(2/R®) can be realized in a smaller superspace, called
“chiral” superspace. It is obtained by adding half of the Poiecapersymmetry
generators, for instance, the right-handed o@¥s,to the coset denominator:

SU(2, ZN
(CA|2N,O — ( 2/ ) — (XN', eia)' (210)
{K,S$SM,D, T, R, Q}
This means adding a new constraint to the set (2.8):

e =0 (2.11)

whereq is the matrix part of the generat@. However, in this case the superalge-
bra (2.1) implies restrictions on the allowed values of the quantum numbers (2.9)
(Wess and Zumino, 1974b). Indeed, the constraints (2.11) and (2.8) yield the com-
patibility condition

(&, sj;}cb =[-8 (o"Yam,, — 255 (2t] + si(t+1)]e=o. (2.12)
This is only possible if the superfield (i.e., its first component (2.9)) carries no
right-handed spin, no SW) indices and has R charge= —¢:
CH2N.0 — D(¢: ji, 0;—¢;0, ..., 0). (2.13)

Suchsuperfields are called (left-handed) chiral. Note that both the superspace (2.10)
and the superfields defined in it are complex.

Given a general superfiekti(x, 6, 0), one can restrict it to the coset (2.10)
by imposing the following differential “chirality” constraint (Ferragaal., 1974)

D{®(x, 6, 6) = 0. (2.14)
HereD is the right-handed half of the “covariant spinor derivatives”
i i pai — 0 .
D(Ix = 89{” +160 '(U“)ao‘zalu Dy = — 255 _ |9i (O—M)adaﬂ- (215)

Note that these derivatives are only covariant with respect to the super-Roincar’
subalgebra of SU(2,/N). They obey the following anticommutation relations:

[D},D}} = (D, Dpj} =0,  {Dl, Dy} = —2i8i(6")ypdu.  (2.16)
A crucial observation is that the chirality constraint (2.14) can be solved by going
to the “left-handed chiral” basis
X =xt4+i6L0M0, 6% =62, oY =69, (2.17)
There D becomes just a partial derivativ®, = —3/06%, so (2.14) simply
implies
d = o(x, 0f). (2.18)



Superconformal Interpretation of BPS States in AdS Geometries 941

An important property of the chiral superfields (2.18) is that the product of two of
them is still a chiral superfield, that is, they form a “ring structure.” Note the close
analogy with the typical property of ordinary analytic functions. As we shall see
in the next subsection, this analogy can be further developed.

2.2. Grassmann Analytic Superfields

A natural question is whether or not one can find other realizations of
SU(2, Z/N) in superspaces involving only part of the odd coordinates. In the chiral
case discussed previously, we chose to add all of the right-handed gen&&tors
which form an irrep of SU), to the coset denominator. Now, let us assume for
a moment the possibility to break SNJ.° We can then take just one of tt@s
or the Qs, for exampleQ? and put it in the denominator. The resulting coset has
2N — 2 left-handed andIq right-handed odd coordinates:

AYN-22N _ SU(2, Z/N)
{K,SSSM,D, T, R, QY}

= (x",08,...,6%,6%,...,0Y)

(2.19)
This means replacing the chirality condition (2.11) by

qtd =0. (2.20)

Then, a compatibility condition analogous to (2.12) follows from the anticommu-
tator

[ Lo = [~(@"™)fm,, — 2/ (2L —e+1)]®=0.  (2.21)

It implies (@""),”m,,® = 0, that is, no left-handed spin, as well as a relation
between the eigenvalue of the SU(generatot}, the R charge and the conformal
dimension:

ji=0, 2Al=¢-r. (2.22)

tt=0, 2<i<N. (2.23)

Let us now make a digression and discuss theNngenerators}. In the
Cartan decomposition of the SN algebra (2.6) the generators withsli < j <
N are associated to the positive roots (“raising operators”). Among thrqni =
1,..., N — 1 correspond to the simple roots, which means that the other raising
operators are obtained by commuting the simple ones. Similarly, the generators
with N > i > | > 1 are associated to the negative roots (“lowering operators”),
the simple ones being“, i=1,...,N—1. Finally, theN — 1 independent

9 Superspaces of this type can be introduced without breakind{Bld(the framework of harmonic
superspace, see Section 3.
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generatorstii (recall thatZiN:1 i‘ = 0) define theN — 1 charges of the Cartan
subalgebra of [U(1)]~! ¢ SU(N) as follows:

N
m
mkztl'(‘—tuztﬂ(‘jtﬁ, I<k<N,m=>"m (2.24)
i=1

wheremy = 0. An irrep of SUN) is generated from the highest weight state
(HWS) |ag, ..., an_1) specified, for example, by the Dynkin labels defined by

a=mg—Mmy1>0 1<k=<N-L1L (2.25)

Correspondingly, the charges (2.24) of a HWS take eigenvaityes m, > ...
mn_1 > my = 0. In the language of Young, tableaux is just the number of
boxes in thekth row. The HWS is by definition annihilated by all the raising
operators:

tilag,...,an-1) =0, 1<i<j <N. (2.26)

In these terms, conditions (2.23) are just a subset of the irreducibility condi-
tions (2.26). From (2.22) we obtain the following restrictions on the quantum
numbers:

2m
— —2mp=r —¢. (2.27)
N

We can go on and consider a superspace of the type (2.19) where the first

pos are missing:

A42N-2p.2N _ SU(2, Z/N)
{K,SSM,D,T,R Q% ..., QP
= (X", 080 O O O, (2.28)

As before, this means to impose
q,®=0, 1<i<p. (2.29)

Then, from the anticommutatos],, s’} =0, 1<i < p we obtain conditions
similar to (2.27):

2
Wm—Zmizr—E, 1<i=<np (2.30)

Also, {q!, Sf} =0forl<i< j < pyields a bigger subset of the irreducibility
conditions (2.26). In addition, this time we obtain a new type of condition:

tila,...,an-1) =0, p>i>j >1 (2.31)
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The generators in (2.31) are lowering operators of I$U(n fact, these new
constraints are corollaries of (2.30). Indeed, from (2.30) follows

y=---=ap-1=0 forp>2 (2.32)
Now, the HWS|ay, ..., any_1) has the property
() ay, ... an 1) = 0. (2.33)

Then it is obvious that (2.32) and (2.33) imply (2.31).

The argument above can be reversed. Take a superfield defined in the su-
perspace\??N-22N (2 19) whose lowest component is in the Sl)(rrep with
Dynkin labels [0,.. ., 0,ap, ..., an-1], p > 1. Then (2.31) holds and combining
it with the constraint (2.20), we obtain the full set of constraints (2.29). Thus, such
a superfield effectively lives in a smaller superspace.

It is clear that we can repeat the same procedure in the right-handed sector.
This time the starting point will be a superspace w&ds absent (note that in
our conventiorg® andqy are the HWSs of the fundamental irrep of U@and of
its conjugate, respectively). From the corresponding condif{eh = 0 we derive

2m

j2=0, Nt (2.34)
Going on and removing right-handed odd variable@}”, ...,@“q*l, that is,
imposing the constraints
@e=0 N—g+1<i<N, (2.35)
in addition to (2.34) we find
m=0, N—-gq+1<i<N-1forqg=>2 (2.36)

As before, this implies the vanishing of the lgst 1 Dynkin labels:
a=0, N-g+1l<i<N-1forq=2 (2.37)
Correspondingly, the HWS is annihilated by the lowering operaq'-orlﬁ >i>
j>=N-qg+1.
Finally, we can combine left- and right-handed constraints and define the
most general G-analytic superspace as follows:

A4\2N—2p,2N—2q — SU(Z’ Z/N)
{K,S, SyMyDaTy R, Qly"'yQpi QN*q+11"'1QN}
= (X", 08,0, ..., 08,62, ...,0, %), p+q=<N. (2398

10The explanation is as follows. The generatffis, &, ,, andtf — t}/ form the algebra of SU(R)c

SU(N). The statgay, ..., an-1) can be regarded as the HWS of an irrep of this SJ@)U(1)
chargeay, that is of dimensiora + 1. Equation (2.33) then follows from the fact théf’l is the
lowering operator of SU(2)
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Following Hartwell and Howe (1995a,b) we shall call (2.38) alN /@, q) su-
perspace™ It is important to realize that anticommuting ti@gs andQs in the
denominator should not produce the translation geneftdhat belongs to the
coset. This explains the conditign+ g < N in (2.38). The superfields defined in
this coset are annihilated by a subset of the Pomsapersymmetry generators:

q®=q®=0, 1<i<p N-g+1<j=<N. (2.39)

These conditions lead to restrictions on the quantum numbers obtained by com-
bining the ones found above:

j1=j2=0;
£ =my;
f=2—m—m1;
N
m1=mZ="':mpa
m =0, N—-g+1<i<N-1, g=2 (2.40)

Such SUN) representations have the figst- 1 and the last| — 1 Dynkin labels
vanishing:

[0,...,0,8p,...,8n_q, 0,..., O]. (2.41)

An interesting limiting case is obtained whent g = N. Such superspaces
contain exactly one half of the initial number of Grassmann variahbekeft-
handed andN — pright-handed spinors). The SNJ representation of the lowest
component of the superfield has only one nonvanishing Dynkin lae) 0.
Consequently! = a, andr = (W — 1)a,. In Section 4 we shall see that in the
special case, = 1 such superfields describe some of the massless superconformal
multiplets.

We remark that chiral superspace can be viewed as a limiting case of the
above when, for examplgy = 0 andgq = N. In this case onlyj; = 0, the other
Lorentz quantum numbegp remains arbitrary.

3. (N, p,q) HARMONIC SUPERSPACE

The chiral superspace introduced in Section 2.1 is naturally realized in terms
of superfields satisfying a differential constraint of the type (2.14). The question
arises if we can formulate similar differential constraints restricting a superfield to
the G-analytic superspaces of Section 2.2. It is quite clear that one should impose
constraints similar to (2.39) with the supersymmetry generators replaced by spinor
covariant derivatives. The only problem is that in (2.29) we have explicitly broken

1The first example of a (3, 2, 1) superspace was given in Galpegh (1987).
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the SUN) invariance, just like when the concept of G analyticity £ 2) was

first introduced in Galperiet al. (1981). This can be repaired by extending the
framework of standard superspace to the so-called harmonic superspace (Galperin
et al, 1984).

3.1. Harmonic Variables on the Coset SUY)/[U(1)]N !

Harmonic superspace is obtained from the ordinary one (2.7) by tensoring it
with a coset of the group SB)/H whereH is a maximal subgroup of SI).
To be able to describe the most general case of G-analytic superfields one has to
choose the smallest such subgroup, which is the Cartan subgroupth1Jhe
resulting coset SWY)/[U(1)]N~* (introduced in Galperiet al.(1984) forN = 2,
in Galperinet al.(1985); Kallosh (1985); Rosly and Schwarz (1986)Xbe= 3 and
in Bandos (1988) for arbitrari) is a compact complex manifold (“flag manifold”
(Knapp, 1977, 1986; Hartwell and Howe, 1995a,b)) of complex dimend{dh —
1)/2. Note, however, that\, p, q) superfields fop > 2 and'orq > 2 effectively
live in the smaller cosets SBI)/[U(1)]N~P~9+1 x SU(p) x SU(Q), as we shall
explain later (see also Hartwell and Howe (1995a,b)).

3.1.1. Covariant Description of the Coset @) /[U(1)] N1

The harmonic variables' and their conjugatels‘, = (u})* form an SUN)
matrix wherei is an index in the fundamental representation of SYand| =
1,..., N are the projections of the second index onto the subgroup [Wtl)]
Further, we define twandependenSU(N) groups, a left one acting on the index
i and a right one acting on the projected indesf the harmonics:

(u) = Aluzh, A eSUN)L, = € SUN)r. 3.1)

In particular, the charge operators (2.24) of 8¢ act on the harmonics as
follows:

Mk Uil = (SKI — SKN)Uil s Mg Ui| = _(SKI — SKN)Ui| . (32)
The harmonics satisfy the following SN{ defining conditions:
ulul) =8},
ueSUN): u'ul =4/,

grivuluN =1, (3.3)
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3.1.2. Harmonic Functions

A basic assumption of the harmonic approach to the cose$PY(L)]N*
is that any harmonic function is homogeneous under the action of §{X{1}, that
is, it is an eigenfunction of the charge operatars
Kq--K Kq---K
my fL () = (Bkar — Sk — 8Ly 8N +--) L (U) (3.4)
(note that the projections (chargels) - - - Kq; L1 --- L, are not necessarily all
different). Thus the harmonic function effectively depends onitfe{ 1) — (N —
1) = N(N — 1) real coordinates of the coset SU([U(1)]N~1. This description
of the coset s global and coordinateless. The function (3.4) is given by its harmonic
expansion on the coset (hence the term “harmonic space”). In ol Stdfariant
notation this expansion is [U(&)N~! covariantand SUN), invariant To give a
simple example, consider the cdde= 2 and the harmonic function
fiu) = flut + fi*ufujug + -
+ fi1-~'in+1J1~"Jnui11 .. uﬁwlui - uJZn 4+ (3.5)
Note that each term in the expansion has the same overalkd{igrge 1. The
first coefficient f' is in the fundamental of SU(R) and the following ones are
symmetric in all of their indices (either becau:n,?’eujl is symmetric ini andj or
because the antisymmetrizationidu? reduces it to a preceding term in (3.5)),
thus realizing irreps of SU(2)of isospinn + 1/2. As a second example, consider
the function

fru) = fHfutut + fIulujuu? + - (3.6)

This time the overall charge is even, therefore the irreps of the expansion carry
integer isospin.

We remark that the irreducible products of harmonics play tie of the
familiar spherical harmonics in the calde= 2, where the coset SU@Q)Y(1) ~ S
(see Galperiret al. (1984) for details).

The aboveN = 2 examples are generalized to axyas follows!? Consider
first a function of the type

1...12...2 N-=-1.--N-1
—— —-—

fm mo- ™8-1 o (U), mp>mp>...>My_1. (3.7)
Note that the charges form a sequence corresponding to the canonical structure of
a Young tableau. This tableau defines the smallest irrep oN$Uthat one finds
in the expansion. All the remaining irreps are obtained by the following procedure.
Denote the HWS of the smallest irrep by its Dynkin labgs, . . ., ay_1) and that
ofanyirrep presentinthe expansion|ldy, . .., Ax_1). Thevectotay, ..., an-1)

12\\e are grateful to P. Sorba for help in developing this argument.
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appearsinthe multipletgenerated by the HWg . . ., An_1) Soitcanbe obtained
by the action of the lowering operators of U :

|a1, . aN_1> = (tlz)nl(tg)nz s (t,’\\‘l_l)anlyAl, Ceey AN_1>. (38)

Here we only use the simple roots; the ordering in (3.8) is of no importance for our
argument. From the SW) algebra we easily find the following relations between
the two sets of Dynkin labels:

Ak=ax+2nk—nNg1—Nky1 >0, k=1,...,N—1 (3.9

Note that the coefficients in (3.9) form the Cartan matrix of B)(The total
number of boxes of the Young tableaux (i.e., number of indices of the coefficients,
see later) is given by

N—1

M= KA =m+ Nny_1. (310)

k=1
Thus one finds alN — 1-parameter family of irreps where the choice of the pa-
rameters is limited only by the requirement&, > 0.

As an illustration of the preceding discussion, look at the first term in the

expansion of the function (3.7):

filmimljl"'jmz"'kl'“kmN—l uill . uilm1u121 . ujzmz . uL\i_l . u’k\lm;i. (3_11)
Unlike the simple SU(2) examples above, here the coefficieate not necessarily
irreducible under SUY),. Indeed, they only possess the symmetry associated
with each type of harmonic projection, but no antisymmetrization between any
two different projections has been performed. Comparing the term (3.11) to the
general case (3.9) we can say that in (3.11) the total number of indices (boxes in a
Young tableau) isM = m, so what is left is theN — 2-parameter family of irreps
corresponding toy_; = 0.

The general term in the expansion of the function (3.7) is obtained from (3.11)
by multiplying it by the chargeless harmonic monomj%}L .- um (the total anti-
symmetrization of the indicas, . . ., iy results in an SUY). singlet, so it should
be eliminated):

1...12...2 N-=-1.--N-1
—— —-—

f mq my ... my_1 (u)
o0
— Z fil"'iM(ul)m1+nN—1 . (uNfl)mN_1+nN-1(uN)nN—1. (312)
nn_1=0

We useny_; from (3.8) as the expansion parameter. Each term in (3.12) has a
coefficient with a total number of indicdd given by (3.10). This coefficient is
decomposed into a set of US), irreps according to the rule (3.9).
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Ifthe charges ([U(13] N~ projections) of the harmonic function do not appear
in the canonical order (3.7), then one should reorder the indices 1,,2\ so that
they can label a Young tableau. For instance Nhe 4 function f 122233should be
rewritten asf 222331 so it corresponds to the Young tableau (3, 2, 1). If a complete
set of N different projections is present, it can be suppressed, that i$y taed
function f1124= {1 Finally, if the function carries lower indices (projections
of the complex conjugate fundamental representation), they should be converted

into sets ofN — 1 upper indices, for example, tié = 4 function f} = f112or
f112 = f12234E f2'

3.1.3. Harmonic Derivatives

The harmonic derivatives are operators that respect the defining relations (3.3):

3 N I L 3 o9
N =u——-u,— - = 6'<u-K——u' —) 3.13
7w Yaul N Kzzl IV auk K aul (313)
They act on the harmonics as follows:
1 . o1
alul =skul — N(S'JuiK, AUl = —apul) + N5'Ju'K. (3.14)

Note that we prefer to treali' and uiI as independent variables subject to the
constraints (3.3).

Clearly, the derivatives) are the generators of the group $Uk acting on
the [U(1)r]N ! projected indices of the harmonics. The assumption (3.4) is then
translated into the requirement that the harmonic functiqo$ are eigenfunctions
of the diagonal derivative@' that count the U(1y charges:

(8 — aN) £ = (St — Skan — Syt 4+ 8Lin + ) ). (3.15)

Then the independent harmonic derivatives on the coset ai(tke- 1)/2 com-
plex derivatives)}, | < J corresponding to the raising operators of S (or
their conjugates), | > J corresponding to the lowering operators of Sl)g).

From the preceding discussions, it follows that the harmonic differential
conditions

oL Ky =0, 1< (3.16)

impose severe constraints on the harmonic function. Indeed, if the function is of
the type (3.7), itis reduced to just one harmonic monomial giving rise to aN$U(
irrep whose HWS is labeled by the charges. Any other harmonic function subject
to the condition (3.16) must vanish.

As an example, takéN = 2 and the functionf(u) (3.5) subject to the
constraint

33 flu)y=0= fl(u)= f'ul (3.17)
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since this is the only term in the expansion (3.5) that automatically satisfies the
condition (3.17). So, the harmonic function is reduced to a doublet of SU(2).
Similarly, for N = 4 the function f 2(u) is reduced to the &f SU(4). Indeed,
the constraint92 f 12(u) = 93 f 12(u) = 0 ensure thaff 12(u) depends o’ and
u®only, f*?(u) = fu'u?. Then the constrairtt; f *2(u) = f'Iuu} = 0 implies
f = — f1'. A harmonic function that vanishes if subject to the constraint (3.16)
is, forexample, il = 2, f1(u) = f2(u), since no termin its expansion can satisfy
the conditiond f?(u) = 0.

Note that not all of the derivativel, | < J are independent, as follows from
the SUN) algebra. The independent ones,

33,03, ...,94 * (3.18)

correspond to the simple roots of QWY Then the constraint (3.16) is
equivalent to

ol H Wy =0, 1=1,..,N-1 (3.19)

We remark that the coset SNJ/U(1)N-1 can be parametrized by(N —
1)/2 complex coordinates. In our context this amounts to making a choice of the
harmonic matrixu! such that the group [U(&]N 1 is identified with [U(1) ]N~*
C SU(N)_.. Then the harmonic derivatives become Cartan’s covariant derivatives
on the coset. The constraints (3.16) take the form of covariant Cauchy—Riemann
analyticity conditions. For this reason we can call the set of constraints (3.16)
(or (3.19)) harmonic (H)analyticity conditions. The above argument shows that
H analyticity is equivalent to defining a HWS of SNJ, that is, it is the SUY)
irreducibility condition on the harmonic functions.

3.2. (N, p,q) Harmonic Superfields

The main purpose of introducing harmonic variables is to be able to define
manifestly SUN) covariant superfields living in the G-analytic superspaces (2.38).
This is done following the example of the chiral superfields. There we replaced
the condition (2.11) by the differential chirality constraint (2.14). In the case of
(N, p, g) analyticity we have to replace conditions (2.39) by analogous differential
constraints. The crucial point now is to let the superfield depend on the harmonic
variables and obtain the adequate [U{1)] projections with the help of harmonic
variables:

D! d(x,6,6,u) = DSD(x,6,6,u) =0 (3.20)
where

D/ =Diu/, D¢=Dfu),, 1<l <P, N—q+1<J<N. (321
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The derivatives appearing in (3.20) anticommute (see (2.16)), therefore there exists
a G-analytic basis in superspace,

Xh = X — i(@lo"Q_l 4+t Qpa"@_p — 9N_q+1a"9_N_q+1 S 9N0“67N),
6¢ = 6eul, 6% =6%ul, (3.22)

where these derivatives become jD$t= 9/36%, Dy ; = —3/06%7. Consequently,
in this basis the analytic superfield (3.20) becomes an unconstrained function of
N — pésandN — g s, as well as of the harmonic variables:

(XA, Opia, ... 0N, 0, ..., 6N 79, ). (3.23)

Let us now turn to the harmonic dependence in (3.23). In principle, each
component in the expansion of the superfield is a harmonic function having an
infinite harmonic expansion of the type (3.12). If we want to deal with a finite set of
fields, we have to impose a harmonic irreducibility condition of the type (3.16) (or
the equivalent subset (3.19)). However, in the G-analytic basis (3.22) the harmonic
derivatives become covariard,). In particular, the derivatives

D} =9 +26;0"0'9, —0;8' +6'3;, 1<I <N-q, p+1<J<N
(3.24)
acquire space-time derivative terms. In the next section we shall see that this has
important consequences on a G-analytic superfield subject to the additional H
analyticity constraints

Didluaal(x, 6,0, .., 60y, 60%, ..., % u)=0, 1<1<J <N.
(3.25)
Here we have indicated the SN representation carried by the superfield.

3.3. (N, p,q) Conformal Superfields

So far in this section we have only discussed G-analytic superfields as rep-
resentations of Poincasupersymmetry. From the analysis of Section 2 we know
that superconformal invariance yields additional restrictions, in particular, on the
SU(N) irrep carried by the superfield. Adapting the arguments of Section 2, one
finds that (3.20) implies the following harmonic conditions (even if we do not
impose the SUY) irreducibility conditions (3.25)):

1<l<p-1 and N—q+1<Il<N-1 (3.26)

These two subsets of raising and lowering operators of\glgénerate the algebra
of SU(p)x SU(Q). In the spirit of the coset construction of Section 2 this means
that we have added the factor i)y« SU(q) to the denominator of the harmonic
coset. In other words, a conformally covariaht, (p, q) superfield lives not only
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in a smaller superspace, but also in a smaller harmonic space as compared to our
initial coset SUN)/[U(1)]N-1. From Section 2 we also know that the Dynkin
labels of such a superfield are restricted (see (2.41)). To summarize, a G-analytic
conformal superfield has the form

008 OOy gy By, 0% ..., 0N, ) (3.27)
and lives in the harmonic coset
[U(l)]N—P—Q+SlL>J<(NS)U(p) x SU(@) forp=2 9=2
[U(l)]ﬁi(li)SU(q) forp=01, 922 (3.28)
[L) S—UP(':I<)SlJ(p) forp=2, q=01
% forp=0,1 and q=0,1

This effective reduction of the harmonic coset has been pointed out in Howe
and Leeming (1994) and Hartwell and Howe (1995a,b). For example, in the par-
ticular case

(D[O,M,O,ap,O,..A,O,aN,q,O,...,O](XA, 0p+1, el QN, 9_11 el e_N—q, u) =
U e SU(N)
S(U(p) x U(@) x U(N — p—q))’
Note thatinthe limiting casd$ = p + gqandN = p + g + 1thetwo cosets (3.28)
and (3.29) coincide.

(3.29)

4. MASSLESS SUPERCONFORMAL MULTIPLETS

Massless multiplets are a particular class of superconformal multiplets. Their
components are fields carrying Lorentz sgin 0), @g, ... «,;, (X) 1 (0, j2), Doy i,
(x) (all indices are symmetrized). In addition, they satisfy the massless field
equations

30 Puayar, =0, 00 Pairyy, = O (4.1)

(or 0p =0 in the case of spin (0, 0)). These massless fields are known
(Binegaret al., 1983) to form UIRs of the conformal algebra SU(2,2) & j + 1.
Consequently, the massless superconformal multiplets form UIRs of SN, 2
(Binegar, 1986; Dobrev and Petkova, 1985, 1987).

In the language of AdS supersymmetry such multiplets are called “supersin-
gletons” (@inaydin and Warner, 1985; Nicolai and Sezgin, 1984).
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In this section we shall formulate the massless multiplets of SU(%) #rst
in terms of ordinary superfields and then, for a subclass of ther,ik,(N — k)
harmonic superspacée.

4.1. Massless Multiplets as Constrained Superfields

There exist three types of massldg¢sextended superconformal multiplets.
They can be described in terms of ordinary constrained superfields (Etoale
1981; Siegel, 1981).

(i). The first type is given by scalar superfields

Wiik(x®, g, 6%), k=1,...,N—1 (4.2)
with k totally antisymmetrized indices l91‘the fundamental representation dfipU(
(i.e., carrying Dynkin labels [Q,.., 0,1, 0,..., 0]). They satisfy the following
constraints:

DU Wizl — g, (4.3)
Dy Wiz = 0 (4.4)

where () means symmetrization afil means the traceless part. In the cases
N = 2, 3, 4 these constraints define the on-sinel= 2 matter (hyper)multiplet
(Sohnius, 1978) and tHé = 3, 4 on-shell super-Yang—Mills multiplets (Sohnius,
1978). Their generalization to arbitraly/has been given in Howet al. (1981) and
Siegel (1981) where it has also been shown that they describe on-shell massless
multiplets.

After rewriting the constraints (4.3) and (4.4) in harmonic superspace in
Section 4.2, we shall see that the above massless multiplets are superconformal if

2k

=1 r=——-1 4.5
= (45)

We also note their SU{) quantum numbers
ml="':mk:1! mk+1="'=mel=01 m:k (46)

(ii). The second type is given by a chiral scalar superfield

Did =0 (4.7)
satisfying the additional constraint (field equation)
D“D)® =0. (4.8)

13The simplest example is provided by the= 2 hypermultiplet (Galperiret al, 1984); the next
example is theN = 3, 4 on-shell SYM field-strength (Galperet al., 1985; Kallosh, 1985; Rosly
and Schwarz, 1986; Galpe nal., 1987; Bandos, 1988); the generalization to the chisd&( N — k)
was given in Hartwell and Howe (1995a,b).
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This superfield is an SUN) singlet. The corresponding massless multiplet is su-
perconformal if (see Section 2.1)

{=-r=1 (4.9)
Similarly, one can introduce an antichiral multiplet:
D! ® =0, Di, DY@ =0 (4.10)
with quantum numbers
t=r=1 (4.11)
(ii). The third type is given by chiral superfields carrying external Lorentz
spin (j1, 0):

Déw, =0. (4.12)

ay-agjy

Here the 2; spinor indices are totally symmetrized. These superfields ar&lpU(
singlets. They satisfy the massless field equation

D'*Wag,a, = 0. (4.13)
As we have seen in Section 2.1, conformal supersymmetry requires that
(=—1=j+1 (4.14)
Similarly, one can introduce antichiral superfields with Lorentz spirjA0,
DiWey-i, = 0, DfWagye, = O (4.15)
with
L=r1r=j+1 (4.16)

Itis straightforward to see that such massless representations coincide with the
massless supermultiplets bf-extended PioncarSupersymmetry (for aN = 8
example see @iaydin and Marcus (1985).).

4.2. Type (i) Massless Multiplets as Analytic Superfields

Now, let us use the harmonic variables to covariantly project all theNJU(
indices in the constraints (4.3) and (4.4) onto (/1. For example, the
projection

W22k = Whiz=k(x 9, g)ulu2 - - uk (4.17)
satisfies the constraints
DIWk = 2wk — ... = Dkw!?k = 0, (4.18)

Dkt W2 = Dy pW2 K = ... = D, yW2*k =0 (4.19)



954 Ferrara and Sokatchev

whereD! = D|,u! andD; = D;u}. Thefirstofthem, Eq. (4.18), is a corollary of

the commuting nature of the harmonics variables, and the second one, Eq. (4.19),
of the defining conditions (3.3). In Egs. (4.18) and (4.19) one recognizes the condi-
tions for G analyticity (3.20) of the typé\(, k, N — k). As explained in Section 3.2,

in the appropriate G-analytic basis (3.2&}?* becomes an unconstrained func-
tion of k s andN — k 6s.

W2 K = W2 K(xu Oy, O, 08 ..., 65, U). (4.20)

It is important to realize that the G-analytic superfield (4.20) is anNgU(
covariant object only because it depends on the harmonic variables. To recover the
original harmonic-independent but constrained superiigide «(x, 6, 6) (4.3),

(4.4) we need to impose differential constraints involving the harmonic variables.
In Section 3.2 we have shown that they take the form of Uifreducibility
conditions, Eq. (3.25). In this particular case they are

DiW#*=0, 1<1<J <N (4.21)
or the equivalent set
D| W?¥*=0, 1<I<J<N-1 (4.22)

In the initial real basis (2.7) of the full supersp&@&®:2N these constraints simply
mean that the superfield is a polynomial in the harmonics, as in (4.17). However,
in the G-analytic basis (3.22) the harmonic derivatives (3.24) contain space-time
derivatives. This leads to a number of constraints on the component fields. The
detailed analysis can be found in (Ferrara and Sokatchev, 2000), here we only
recall the final result:

W12~~k — ¢12~-k
+oky 405y
+9k+lxl kk+l+ +9NX1 kN

w23 k o 12-k—1

+ ngzl/f(aﬁ)a...k bt 9—5_19—21;(&,3) 1...k—2

B 1.--kk+1k+2 B . 1-kKN—=1N
+ O 1O 2 Xiopy A OO X ey

+ 9_6}1 o w(“l ) + 9k+l eﬁlNikX(al"-aka)
+ derivative terms (4.23)

Here all the component fields belong to totally antisymmetric irreps ofNgU(
for example,¢*#*(x, u) = gliz-(x)ul uZ - - - uk . Further, these fields satisfy
massless field equations of the type (4.1).



Superconformal Interpretation of BPS States in AdS Geometries 955

We conclude this section by a remark concerning the conformal properties of
the above multiplets. The\|, k, N — k) analytic superfiel&V? ¥ is characterized
by the SUN) quantum numbergy; =---=mg =1, M1 =--- =my_1 =0.
From Egs. (2.40) we see that if

2k
Kk = 1, Nk = W -1 (4.24)

W12k realizes a massless UIR of the superconformal algebra.

5. UIRs OF D = 4 N-EXTENDED CONFORMAL SUPERSYMMETRY

In this section we shall show how the complete classification of UIRs of
SU(2, 2Z/N) found in Dobrev and Petkova (1985, 1987) (see also Binegar (1986)
and Morelet al. (1986) for the massless case) can be obtained by multiplying the
three types of massless superfields introduced in Section 4.

5.1. The Three Series of UIRs

The results of Dobrev and Petkova (1985, 1987ll into three distinct
series. The simplest one (called series C in Ferrara and Sokatchev (2000)) is given
by the following conditions:

2
C t=my, rzwm—ml,jlzjzzo. (5.1)

We can construct the superfield realization of series C by multiplying massless
G-analytic superfield8 (“supersingletons”) of the type (4.20):

W[a1 ..... an-1] — (Wl)al(wlZ)az L. (lemN—l)aN_l. (52)

Since each factor in (5.2) satisfies the usual harmonic irreducibility constraints,
the same is true for the product:

DBW[al,...,aN_ﬂ =0, 1<J<I| <N. (5.3)

As a result, the lowest component of the superfield (5.2) is an irrep oNJU(
with Dynkin labels fy, ..., an_1]. This is easily seen by realizing that (i) all
the SUN) indices projected with harmonieg® for a givenK are symmetrized;
(ii) their total numberisng = Y\ a; (iii) the harmonic conditions (5.3) remove
all symmetrizations between indices projected with different harmarficand

140ur conventions differ from those of Dobrev and Petkova (1985, 1987) in the following sense:
r— —r,2m/N — 2m; — 2m/N.

153eries of operators obtained as powers ofithe: 4 super-Yang-Mills field strength considered as
a G-analytic harmonic superfield were introduced in Howe and West (1996, 1997, 1999). They were
identified with short multiplets o8U(2, 2/4) and their correspondence with the K-K spectrum of
1IB supergravity was established in Andrianopoli and Ferrara (1998a,b, 1999).
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ut. All this reproduces the structure of a Young tableau with numbers of boxes
(mg, my, ..., my_1), thatis, Dynkin labelsdy, ..., any_1].

Further, from (4.24) we find = ZL\‘:_ll al = my andr = ZL\Iz_ll aly =
ZW’“ — my, which exactly reproduces (5.1). Thus, we have proved that the complete
series C is realized by the product (5.2) of massless multiplets.

We remark that for a generic choice of the Dynkin labels the superfield (5.2)

is (N, 1, 1) G-analytic. However, if the firsp — 1 or the lastq — 1 (or both)
factors in (5.2) are absent, that is, if the corresponding Dynkin labels vanish, we
obtain further analyticity conditions of the typdl{ p, q), in accord with (3.27).
We should mention that in Dobrev and Petkova (1985, 1987) a list of the possible
superconformal differential conditions on superfields is given. There one only finds
(N, 1, 1) G analyticity conditions, but this can be explained by the observation
made before.

The second series (called B in Ferrara and Sokatchev (2000)) is given by the
following conditions:

2m . 2m
B: e:—r+W22+211+r+2m1——, j2=0 (5.4)

N
(or j1 = jo,r — —r, ZW'“ — 2m; — ZW”‘). It can be obtained by multiplying the
G-analytic massless superfield (5.2) by left-handed chiral ones as follows:
Wy, DEWIAL 2001 (5.5)

wherek > 0is an integer. The first factor in (5.5) brings in the Lorentz spin@).
The second factor adjusts the dimension and R charge of the series,

. . 2m
=14 j1+m+Kk, r=—1—11—k—m1+W, (5.6)

so that they exactly match (5.4). The conformal bound in (5.4) is obtained for
k = 0, that is, without employing any scalar chiral superfields. The alternative
series of this type is obtained by replacing chiral by antichiral superfields.

Finally, the most general series (called A in Ferrara and Sokatchev (2000)) is
given by the following conditions:

. 2m . 2m
A: 622+212—r+W22+211+r+m1—W (5.7)

(or j1 — ja,r — —, ZW’“ — 2m; — ZW”‘). This series is obtained by multiplying

together all possible types of massless superfields:

W, Vvdl,,.dzjz@kq;sW[al""vaN—ﬂ (5.8)

ay-0gj,

wherek > s > 0 are integers. This time we find

. . . . 2m
=24 j1+ jo+m+k+s, r:JZ—Jl—k+s—m1+W, (5.9)
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which correspondsto (5.7). The two conformal bounds in (5.7) are saturateg-for

0 ork = s = 0, that is, without employing one or the other type (or both) of scalar
chiral superfields. These bounds correspond to superfields satisfying differential
constraints, as explained in Section 5.3. The alternative series is obtained by taking
s>k=>0.

Note that in the abstract series (5.4) and (5.7) the dimerfsionl R charge
can be any real numbers. To account for this, the powargls in (5.5) and (5.8)
will have to take noninteger values, although this might violate unitarity. This does
not happen for series C whefas always integer and s rational.

One final remark concerns the unitarity of the above series of representations.
Earlier we mentioned that the massless multiplets (supersingletons) are known to
be UIRs of the superconformal algebra. Then it is clear that by multiplying them
as we did above we automatically obtain the series of UIRs.

5.2. Series Obtained From One Type of Supersingleton

In Section 5.1 we used all possible G-analytic supersinglefgtis " with
1<n < N —1 to reproduce the complete series C. An alternative approach is
to use different realizations of the same type of supersingleton (i.e., for a fixed
value ofn). We presented a similar construction in Ferrara and Sokatchev (2000),
where we only considered the case- N/2 (for evenN). The generalization is
straightforward. The result is a series of UIRs that is a particular case of the series
B above.

The supersingletow? " can be equivalently rewritten by choosing different
harmonic projections of its SW) indices and, consequently, different sets of G
analyticity constraints. This amounts to superfields of the type

W|1|2-~|n(9J

03, 0", 00 (5.10)
wherely, ..., lyandJ 1, ..., Iy are two complementary setsMfindices. Each
of these superfields depends dd &rassmann variables, that is, half of the total
number of N. This is the minimal size of a G-analytic superspace, so we can say
that theWs are the “shortest” superfields (superconformal multiplets).

The idea now is to start multiplying different versions of tés of the
type (5.10) (for a fixed value af) in order to obtain composite objects, depending
on various numbers of odd variables. The following choicé/sfand of the order
of multiplication covers all possible intermediate types of G analyticity:

A(p1, P2, ..., Pn-1)
— [Wl"'n(9n+1,,,N9_1mn)] p1t-+Pn-1

x [Vvl»»-n—ln-~-1(6)D n+2mN671~~n—1n_+1)] p2+--+Pn-1

n+1? *

x [WENEH2(G, gy @ T IE2)] Pt
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x [WE=IN=1(g N o nOY M EN=Ly] Pront et P

x [Wlmn—Zn n+1(9n_1n+2mN9_1mn—2n n+1)] PN—nt1t-+PN-1

1-n—-3n-1nn+l A1-n—3N—1n N+1y] Pu_ns2-++ PN
X [W (9n;2n+2...N0 )] PN-n+2 N1

« [\/\/13»-n-%-1(02 Ni2N 9_13---n+1)] Pn—2+PN-1

% [W23"'"+1(9; 2N 6723---n+1)] PN-1 (5.11)

The powerzr'\':_k1 pr of the kth W is chosen in such a way that each new

pr corresponds to bringing in a new realization of the same supersingleton. As a
result, at each step a névor 6 appears (they are underlined in (5.11)), thus adding
new odd dimensions to the G-analytic superspace. The only exception of this rule
is the second step at which both a n@and a new) appear. So, the series (5.11)
covers the caseN( n, N —n), (N,n —1, N — n — 1) and then all intermediate
cases up toN{, 1, 0).

The superfieldA(p1, P2, - .., Pn—1) Should be submitted to the same H-
analyticity constraints as one would imposeWr " alone,

Dl AP, P2, - PN-1) =0, 1 =1,2,...,N—-1 (5.12)

This is clearly compatible with the G-analyticity conditions ép1, p, ...,
pn-_1) since they form a subset of these Wi ". As before, H analyticity makes
A(p1, P2 ..., Pn_1) irreducible under SUY).
By counting the number of occurrences of each projection 1,.2N — 1
and the dimensions and R charges in (5.11), we easily find the relations
N—-1 2n
L= Kp,, m=£—pn_1y, M=n¢, 1 = <— — 1>£. (5.13)
k=1 N
If N = 2n this series has no R charge.df_; = 0 the product (5.11) represents
a G-analytic superfield and is thus a particular case of the seriep_{f> 1 it
depends on alls and on albs buté™, so it is a particular case of the series B (5.6)
with j; = 0.
Finally, the Dynkin labels of the SU) irrep carried by the first component

of A(p1, P2, - .., Pn—1) are given below:
a1 = Pn-2,
A = PN-3,---1 -2 = PN-n+1,

N-1

N—n
a1=(N-n-2) Z pk+Z(k_1)pky

k=N-n+1 k=2
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an = Pu,
N-—-1
a1 =p2+ Y. (K=N+np
k=N-n+1
A2 = P3, ..., aN-2 = PN-n-1,
N—1
an-1 = Z Pk- (5.14)
=N-n
A particular interesting case is obtainedaj§_1 = 0. This impliespy_n =
= pno1=0, soa; = = an_2 = 0. In other words, this is a G-analytic
superﬂeld of the typeN, n— 1, 2). The remaining Dynkin labels agg_; =
wo Mk — 1)px, @ = P1 @1 = P2, ..., ay_2 = Pn_n_1. In general, none of

these labels vanishes, therefore the harmonic coset in whichNhis € 1, 2)
superfield lives is not smaller than the expected one N9IPU(1)]N " x SU(N —
1) x SU(2).

5.3. Shortness Conditions

In the AdS literature the term “short” applies to multiplets that do not reach
their maximal spin (equal toj{ + % 2+ %) where (1, j2) is the spin of the
first component) or which contain constrained fields like, for example, conserved
vectors. Our construction of the UIRs of SU(2NP) in terms of supersingletons
allows us to easily find out when and what type of “shortness” condition takes
place.

To this end we recall that the building blocks ® andW are all constrained
superfields corresponding to the “ultrashort” supersingleton multiplets. They are
either G-analytic ((4.18), (4.19)) or chiral ((4.7), (4.12)). In addition, they satisfy
on-shell constraints that take the form of Y (rreducibility harmonic conditions
(4.21) in the G-analytic case or are of the type (4.8) or (4.13) in the chiral case.

Now, the most general product of chiral, antichiral, and G-analytic superfields
as in the series A (5.8) only satisfies the harmonic constraints (4.21) (recall that
w and ® are harmonic-independent). However, there are a number of particular
cases where some constraints onéﬂd:ependence still take place

constraints (4.12), (4.13) of the factarwith the G-analyticity ones of the factor
W. In the generic case the latter is of the typg (L, 1), so we have
D_d (Woll-"l)lzjlw[al ..... aN—I]) =0, (5.15)
D™ (Wagy-.ay, WIS #-11) = 0, (5.16)

If W carries Dynkin labels like in (3.27), it is of the typ&l( p, g) and, corre-
spondingly, we obtaig equations like (5.15) and ones like (5.16).
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D_é[ij (cbw[al ----- aN—l]) =0, (5.17)
D« Dg{.(q)w[al <<<<< aN—1]) =0 (518)

or more of the same type W is (N, p, q) analytic.

(i) The bilinear products of chiral with antichiral superfields are current-like
objects. They satisfy constraints which turn the top spin in the superfield into a
conserved “current.” The simplest example is the bilingdr:

D“D}(®®) =0,  D;zD(®P) = 0. (5.19)

These constraints can be weakened if we multqa§ by a G-analytic factow.
In this case only certain projections of (5.19) are preserved, for example,

Dl Di—(qu_)W[aly...,aN—ll) — D D_""\‘ (@q_)w[al ..... aN_ﬂ) —0. (5.20)

Yet another current-like object is the bilinem(;l...o[Zil vVé,l.A.dzjz. It satisfies the
constraints

Dy’ (Wary--azy, Wiy, ) = O, (5.21)
D' (Waas-way, Way-itzy, ) = O. (5.22)

As before, the prodU(\‘nL,,l...azJ.1 Wdr"dzjz WlaL-av-l satisfies only the correspond-
ing projections of (5.21) and (5.22).
Similarly, the biIineanal..Aazij satisfies the constraints

D' (Way-wayy, @) = O, (5.23)
Dis D (Waryac, @) = O. (5.24)

(iii) A different class of “short” objects are obtained from the most general
product (5.8) of series A either by settiisg= 0 or j, = 0 ands = 1. In other
words, we take the currentlike bilinears above and multiply them by a BPS object
(i.e., product of a chiral and a G-analytic factor). The resulting objects satisfy the
constraints (for a generl/)

D_(;l\l (wal...azjlvvddz...dzjz<I>"W[a1 """ aN'ﬂ) =0, (5.25)
D g DYy (Wery- -y, @DKWIR-88-21) — (5.26)

We call such objects “intermediate short.” Note that they saturate the first conformal
bound in (5.7). Intermediate short multiplets, as they are defined above, will also
occur ind = 6 andd = 3 (see Sections 6.4 and 7.4).
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5.4. BPS States of SU (2,/N)

Here we give a summary of the SU(2,]2) multiplets that correspond to BPS
states® They are realized in terms of superfields that do not depend on at least
one spinor coordinate. There are three distinct ways to obtain such multiplets.

5.4.1.(p, q) BPS States

Superfields that do not depend on the fp$ts and the lasg 6 are obtained
by multiplying G-analytic objects:

pz_':;lq BPS: WO 033 man-a Ol . gy, %, ... GN9)
— (W12P)an (W2 PH1yaeia | (W12-N=0)yan-q (5.27)
where
1<pg<N-1, p+g<N. (5.28)

Note that the fraction of supersymmetry preserved by, & BPS state ranges as
follows:
pP+q
2N
The two end points are obtained fpr= g = 1 and forp + q = N.
Such states have the firpt— 1 and the lasg — 1 SU(N) Dynkin labels
vanishing. The remaining quantum numbers are

= o 9 2k
(=Y h=i=0 r=Y (F-1)a 630
k=p

k=p

=

(5.29)

NI =

1
— <
N =

Generically, such superfields live in the harmonic space
SU(N)

. 5.31
[U(]"—>-1 x SU(p) x SU@) (531
If a subset of the Dynkin labels vanish, for instance,
Qpym =Apymy1 = =an—q-n=0, p+g+m+n=<N,
the coset (5.31) is further restricted to
SU(N
N) (5.32)

[U@L)]™" x SU(P) x SU@ xSUN —p—q-m—-n+2)

16Note that such BPS states have a close resemblance to BPS Baindtplets in five dimensions
(Hull, 2000), as expected by a limiting procedure.
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5.4.2.(0,q) BPS States

Superfields that do not depend on the taag's (or, alternatively, on the first
pos) are obtained by multiplying G-analytic objects by left- (or right-) handed
chiral ones:

q

5 BPS: win g a0 O, gy, 6, ., oM7)

= Wojag, GSWHH (W) . (W2 Ny (5:33)
wheres > 0 is an integer and
1<qg<N-1L (5.34)
Note that the fraction of supersymmetry preserved by gY&PS state ranges as
follows:
1 a _N-1
2N — 2N 2N
Such states have the lgst- 1 SU(N) Dynkin labels vanishing. The remaining
quantum numbers are

(5.35)

N—q N—q 2k
(=1+4j1+s+Y & j2=0, r=-1—ji-s+y <N —1)ak
k=p k=p
(5.36)
Generically, such superfields live in the harmonic space
SU(N)
. 5.37
UV x SU@) 537
If a subset of the Dynkin labels vanish, for instance,
=0, 1<n<N-q-1,
the coset (5.31) is further restricted to
SU(N) (5.38)

[U)]N-9" x SU@) x SUM + 1)’

5.4.3. Chiral BPS States

These are described by superfields that do not depend on all é_fstt‘cﬁ,
alternatively, on th@s), that is, which are left- (or right-) handed chiral:

1
> BPS: Woy.ayy, (01, -+, ON) :wal...azjlcbs. (5.39)
They are SUN) singlets. The remaining quantum numbers are:

=14 j1+s, j2=0, r=-1-—j,—s (5.40)

The chiral superfields are harmonic-independent.
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6. THE SIX-DIMENSIONAL CASE

The method described above can also be applied to the superconformal al-
gebras OSp(8%22N) in six dimensions. We will first examine the consequences
of G-analyticity and conformal supersymmetry and find out the relation to BPS
states. Then we will construct UIRs of OSp(@N) by multiplying supersingle-
tons. The results exactly match the general classification of UIRs of O&g*
of Minwalla (1998). Some of the results relevant to the c&ées 1, 2 have already
been presented in Ferrara and Sokatchev (2000).

6.1. The Conformal Superalgebra OSp(8/2N) and Grassmann Analyticity

The part of the conformal superalgebra OSp@y) relevant to our discus-
sion is

{Q, } %w o (6.1)
{S)" Sﬁj} aﬂKu (6.2)
{Q.. 8"} = IQ‘J(y“”)aﬁM,w+zaf‘(4T” 12 D), 6:3)
D, Q']:'é i [D,S“]:——S"" (6.4)
[T, Q] = —5(@4 Q) + 29q) ©5)
[T, T4] = %(Qik-l—lj + QI TH 4 QITI 4 @il TH), (6.6)

Here Q! are the generators of Poineastpersymmetry carrying a right-handed
chiral spinor indexx = 1, 2, 3, 4 of the Lorentz group SU*(4y SO(5, 1) (gen-
eratorsM,,,) and an index = 1, 2,..., 2N of the fundamental representation of
the R symmetry group USpl) (generatord 'l = T11); %I are the generators of
conformal supersymmetry carrying a left-handed chiral spinor inDégthe gen-
erator of dilationsP,, of translations and,, of conformal boosts. It is convenient
to make the nonstandard choice of the symplectic m&itfix= —Qi with nonva-
nishing entrie!?N = Q22N-1 — ... = QNN+1 — 1 The chiral spinors satisfy
a pseudoreality condition of the typ@;l = Qi Q‘fcﬁa wherec is a 4x 4 unitary
“charge conjugation” matrix. Note that the generatbtsP, K, D form the lie
algebra of SO(8*) SO(2, 6) and the generato@zand S form an SO(8*) chiral
spinor.

The standard realization of this superalgebra makes use of the superspace

REIBN _ OSp(8/2N)

®.sm,0,7 00 0
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whereg“! is a left-handed spinor. Unlike the four-dimensional case, here chirality

is not an option but is already built in. The only way to obtain smaller superspaces
is through Grassmann analyticity. We begin by imposing a single condition of

G-analyticity (cf. Eq. (2.20)):

Qe ®(x, 0) =0, (6.8)
which amounts to considering the coset

AR = {K,Z.S I\F/)I(,gD/,Z'T,)Ql} =0 69)
(note that with our conventior&® = 65, ...,0°N =03, 0°Ntt = —g7 ...,

62N = —g2). From the algebra (6.1)—(6.6) we obtain
my, =0, (6.10)
tllotl2— ... —tIN-1_¢ (6.11)
41N Ly =o. (6.12)

Equation (6.10) implies that the superfiddmust be a Lorentz scalar. To interpret
Egs. (6.11) and (6.12), we need to split the generators of Ugpif@o raising
operators (corresponding to the positive roots):

TKN- k=1,...,N, I=Kk,...,2N —k(simpleifl =k); (6.13)
[U@)]N charges:
Hi = —2TKeN-k+1 =1, N; (6.14)

the remaining generators are lowering operators (corresponding to the negative
roots). The Dynkin labelsy of a USp(2N) irrep are defined as follows:

a=H—Hgi, k=1,...,N—1, ay=Hy, (6.15)

so that, for instance, the generat@t is the HWS of the fundamental irrep
(1,0,...,0).

Now it becomes clear that (6.11) is part of the USgj2rreducibility con-
ditions, whereas (6.12) relates the conformal dimension to the sum of the Dynkin
labels:

N
=23 "ac. (6.16)
k=1

Let us denote the highest-weight UIRs of the OSp(8F)algebra by
D(¢; 1, 2, Jz;aq, ..., an)

wheret is the conformal dimensionly, J,, J; are the SU*(4) Dynkin labels and
a are the USp(Rl) Dynkin labels of the first component. Then the G-analytic
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superfields defined previously are of the type
N
d(pL22N-1y o D(Z a;0,0,0a,..., aN>. (6.17)

k=1

The next step is to add the genera@ to the superspace coset denominator:

6/4(2N—2, v pal,2,...,2N-2
A 14( ) { S ’ T, ' } (XI ,9 ) (618)

This implies the new constraints

42MN-14p=0=a =0, (6.19)
2N = 0. (6.20)

Note that the vanishing of the lowering operat®f\ means that the subalgebra
SU(2)c USp(2N) formed byt12N—1 122N gndt2N | _t22N-1 acts trivially on the
particular USp(®) irreps. This is equivalent to settirrg = 0, as in (6.19). Thus,
the new G-analytic superfields are of the type

N
POV N-2) & D(ZZak; 0,0,0;0a,..., aN)- (6.21)
k=2

From (6.1) itis clear that we can go on in the same manner until we remove
half of thegs, namelyN+2, ..., 92N, Each time we have to set a new Dynkin label
to zero. We can summarize by saying that the superconformal algebra @3N{8*
admits the following short UIRs corresponding to BPS states:

N
%BPS: D(Z ak;0,0,0;O,...,O,ap,...,an), p=1,...,N. (6.22)
k=p

6.2. Supersingletons

There existthree types of massless multiplets in six dimensions corresponding
to ultrashort UIRs (supersingletons) of OSp(8N) (see, e.g., Griaydin and
Takemae (1999) for the cad¢ = 2). All of them can be formulated in terms
of constrained superfields as follows.

(i) Thefirsttype is described by a superfigldi=in}(x, ), 1 < n < N, which
is antisymmetric and traceless in the external USy)(thdices (for evem one
can impose a reality condition). It satisfies the constraint (see Hbwak (1983)
and Park (1999)).

Dkwliiz+nl — 0 = D(2;0,0,0;0,..,0,a,=1,0,...,0), (6.23)
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where the spinor covariant derivatives obey the supersymmetry algebra
[D,,D}} = —2iQlyka,. (6.24)

The components of this superfield are massless fields. In thé\casa = 1 this
is the on-shell (1, 0) hypermultiplet and fof = n = 2 it is the on-shell (2, 0)
tensor multiplet (Howest al., 1983; Bergshoe#t al., 1986).

(i) The second type is described by a (real) superfield without external indices,
w(X, 0) obeying the constraint

D! Dhw =0 = D(2;0,0,0;0, .., 0). (6.25)

(iii) Finally, there exists an infinite series of multiplets described by superfields
with n totally symmetrized external Lorentz spinor indiCegy,....,) (X, 6) (they
can be made real in the case of evgmobeying the constraint

DisW(es--an) = 0 = D(2+n/2;n, 0, 0;0,..., 0). (6.26)

As shown in Ferrara and Sokatchev (2000), the six-dimensional massless
conformal fields only carry repsl{, 0) of the little group SU(2)x SU(2) of a
lightlike particle momentum. This result is related to the analysis of conformal
fields ind dimensions (Siegel, 1989; Angelopoulos and Laoues, 1998). This fact
implies that massless superconformal multiplets are classified by a single SU(2)
and USp (&) R symmetry and are therefore identical to massless super-Peincar’
multiplets infive dimensions. Some physical implication of the above circumstance
have recently been discussed in Hull (2000), where it was suggested that certain
strongly coupledi = 5 theories effectively become six-dimensional.

6.3. Harmonic Superspace

The massless multiplets (i) and (ii) admit an alternative formulation in har-
monic superspace (see Hoeteal. (1985), Zupnik (1986a,b), and Howe (1999) for
N = 1, 2). The advantage of this formulation is that the constraints (6.23) become
conditions for G-analyticity. We introduce harmonic variables describing the coset
USp(2N)/[U(D]I":

ueUSp@N): ujuy=3¢5 uQlu/ =", u =) (627

Here the indices and j belong to the fundamental representation of US{)(2
and| andJ are labels corresponding to the [U(1)projections. The harmonic
derivatives

0

J

DI‘:| = QK(I Ui ) W (628)
|

form the algebra of USp(2)r (see (6.6)) realized on the indicésand J of the
harmonics.
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Letus now project the defining constraint (6.23) with the harmauffas' - - -
ul, K=1,...,n

DIW! M = D2W'? " = ... = DIW!* " = 0 (6.29)

whereDX = D} uf¢ andw??" = wiir-inlyl ... y" Indeed, the constraint (6.23)
now takes the form of a G-analyticity condition. In the appropriate basis in su-
perspace the solution to (6.29) is a short superfield depending on part of the odd
coordinates:

W20 (xa, 01,02, ...,02N" ). (6.30)

In addition to (6.29), the projected superfiald?" automatically satisfies the
USp(2N) harmonic irreducibility conditions

DKN-Kwl2_0o ~ K=1,...,N (6.31)

(only the simple roots of USp{®) are shown). The equivalence between the
two forms of the constraint follows from the obvious properties of the harmonic
productsufuff =0 andQ”uiKujL =0 for 1< K < L < n. The harmonic con-
straints (6.31) make the superfield ultrashort.

Finally, in case (i), projecting the constraint (6.25) w'uhu}, wherel =
1,..., N (no summation), we obtain the condition

D,Dyw = 0. (6.32)

It implies that the superfield is linear in each projectio®®' .

6.4. Series of UIRs of OSp(8¥2N) and Shortening

It is now clear that we can realize the BPS series of UIRs (6.22) as products
of the different G-analytic superfields (supersingletons) (6:28PS shortening
is obtained by setting the firgt — 1 USp(2N) Dynkin labels to zero:

% BPS: WO-0apanlgl g2 g2N=P) — (Wl-P)2 ... (WL Ny (6.33)
(note that even iy # 0 we still have ¥2N shortening).

We remark that our harmonic coset USNZ[U(1)]N is effectively re-
duced to

USp(2N)
U(p) x [U(D)IN-P

in the case 0f/2N BPS shortening (just as it happened in four dimensions). Such
a smaller harmonic space was used in (Howe, 1999) to formulate the (2, 0) tensor
multiplet.

(6.34)

17 As a bonus, we also prove the unitarity of these series, since they are obtained by multiplying massless
unitary multiplets.
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A study of the most general UIRs of OSp(@N) (similar to the one of
Dobrev and Petkova (1985, 1987) for the case of SU{2)2is presented in
Minwalla (1998). We can construct these UIRs by multiplying the three types of
supersingletons, (6.33)—(6.35).

Wary -ty Wiy Wy WHEWIRL 2] (6.35)

wherem; > m, > mg and the spinor indices are arranged so that they form an
SU*(4) UIR with Young tableaurfy, my, mg) or Dynkin labelsJ; = m; — my,
J, = my — m3, J3 = ms. Thus we obtain four distinct series:

1 N
A) €>6+ §(J1+2Jz+3J3)+22ak;
k=1

1 N
B) k=0 (¢>4+ 5(31+232)+226k;
=1

1 N
C) Hr=U=0 €22+ 0+2) a;
k=1

N
D) i=k=Uk=0, £=2) a (6.36)
k=1

The superconformal bound is saturated wkea 0 in (6.35). Note that the values

of the conformal dimension we can obtain are “quantized” since the fatbas

¢ = 2k andk must be a nonnegative integer to ensure unitarity. With this restric-
tion Eqg. (6.36) reproduces the results of Minwalla (1998). However, we cannot
comment on the existence of a “window” of dimensions %Jl +2 Zszl a <
<4+ %Jl +2 ZL\':l ax conjectured in Minwalla (1998%.

In the generic case the multiplet (6.35) is “long,” but for certain special
values of the dimension some shortening can take place (Minwalla, 1998). We can
immediately identify all these short multiplets. First of all, case D corresponds to
BPS shortening. In the other cases let us firsgset 0, that is, no BPS multiplets
appear in (6.35). Then saturating the bound in case A (i.e, sé&ttin@) leads to
the shortening condition (see (6.26)):

; 1
"BV D (Wawci Wp gy Wyy) = 0 — £ = 64 5(h+2%+3%). (637)
Next, in case B we have two possibilities: either we saturate the bdusadd( or
181n arecent paper (Ferrara and Fronsdal, ) the UIRs of the six-dimensional conformal algebra SO(2,6)

have been classified. Note that the superconformal bound in case A (vath-alD) is stronger that
the purely conformal unitarity bounds found in Ferrara and Fronsdal (2000).
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we use just one factow (k = 1). Using (6.25) and (6.26), we find

: 1
EBVaﬁ D;/ (W&-"&mlwﬁ“'ﬂmz) =0—>4{(=4+ E(Jl + 2J2), (638)

o 1
€70 D D)) (WWy..qy Wp...p,,) =0 — £ =6+ S(h+2%). (639

Similarly, in case C with]; # 0 we have three options, namely, setting: 0 —
=2+ %Jl (which corresponds to the supersingleton defining constraint (6.26)
ork =1, 2, which gives:

o 1
7P DIDY (Wi ) = 0 — € = 4+ St (6.40)

o 1
€77 D D) D) (WWo.op, ) = 0 £ =64 S 1. (6.41)

Finally, in case C withJ; = 0 we can take the scalar supersingleton (6.25) itself,
thatis,sek =1 — ¢ =2,0orsekk = 2, 3:

e DiDDYW?) =0— ¢ =4, (6.42)

7" D] DED)(W?) = 0 — ¢ = 6. (6.43)

Introducing USp(A) quantum numbers into these shortening conditions is
achieved by multiplying the short multiplets by a BPS object. The new short
multiplets satisfy the corresponding USp{Rprojections of Egs. (6.25), (6.26),
(6.37)—(6.43). We call such objects “intermediate short.”

7. THE THREE-DIMENSIONAL CASE

In this section we carry out the analysis of the- 3, N = 8 superconformal
algebra OSp(#, R) in a way similar to the above. Some of the results have
already been presented in Ferrara and Sokatchev (2000). As in the previous cases,
our results could easily be extended to OSp4, R) superalgebras with arbitrary
N. The N =2 and N = 3 cases were considered in Fabétial (2000) and
Fréet al. (1999).

7.1. The Conformal Superalgebra OSp(84, R) and Grassmann Analyticity

The part of the conformal superalgebra OSE(&R) relevant to our discussion
is given below:

[QL, QL) =251yl Py, (7.1)
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{Ql, S}} = 8" Map + 2e0(T') + 87 D), (7.2)
[Tij' Qz] =i(sQ) —sMqQl), (7.3)
[T, TH] = i@ T 4 81Tk — sikTil — 5l TIK), (7.4)

Here we find the following generatorQ!, of N = 8 Poincae” supersymmetry
carrying a spinor index = 1, 2 of thed = 3 Lorentz group SL (ZR) ~ SO (1, 2)
(generatordM,g = Mg,) and a vectdf indexi =1,..., 8 of the R symmetry
group SO(8) (generatoi®s! = —TI'); §, of conformal supersymmetr®,, 1 =
0, 1, 2, of translations) of dilations.

The standard realization of this superalgebra makes use of the superspace

gote_ _OSPEAR)
" {K,SM,D,T}

To study G analyticity we need to decompose the gener@pnsnder [U(1)f
SO(8). Besides the vector representatipoBSO(8) we are also going to use the
spinor ones, 8and 8. In this context we find it convenient to introduce the four
subgroups U(1) by successive reductions: SG{850(2) x SO(6)~ U(1) x
SU(4)— [SO(2)F x SO(4)~ [U(1)]? x SU(2) x SU(2)— [SO(2)I ~ [U(1)]*.
Denoting the four U(1) charges by, (+), [+], and {£+}, we decompose the 3
eight-dimensional representations as follows:

= (x*, 6. (7.5)

8,: Q — QF, Qi) QI (7.6)
8 ¢? — ¢TI $=ONH H+OE 4= (7.7)
8. 08 = ot G=ONE G+ G- (PI] (7.8)

The definition of the charge operatds, i = 1, 2, 3, 4, can be read off from the
corresponding projections of the relation (7.2):

1 1
{ ;—+, §ﬂ7} = EMaﬁ +6a/3(D — §H1>,
__ 1 1
{Ql(;(++)!sl(3 )} ZéMaﬂ"i_Eaﬁ(D_EHz)!

1= 1 1 1
[Q1™, g7} = SMa +eaﬁ(D ~ 5Hs ~ §H4),

A gy - 1 1 1
{Q) S }_—EMaﬁ—eaﬂ D — SHs+ SHa). (7.9)
193ince SO(8) has 3 eight-dimensional representatians88and § related by triality, the choice
which one to ascribe to the supersymmetry generators is purely conventional. To be consistent with
the otherN-extended = 3 supersymmetries where the odd generators always belong to the vector
representation, we prefer to put apiBdexi on the supercharges.
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In this notation we have

[Hi, Q%] = [H, Q4] = 42
[y Q9] = [H, QU] QM. (7.10)

Let us denote a quasi-primary superconformal field of the OZp(8) alge-
bra by the quantum numbers of its HWS:

D(¢; J; &1, @z, ag, &) (7.12)

where( is the conformal dimension] is the Lorentz spin and, are the Dynkin
labels (see, e.g., Frappett al. (2000)) of the SO(8) R symmetry. In fact, in our
scheme the natural labels are the four chalg€the eigenvalues dff;). They are
related to the Dynkin labels as follows:

hy = 2(a; + ap) + az + aa,

hy, = 2a, + ag + au,
h; = a3, hs=ay, (712)

or, inversely,
1 1
a = E(hl — hz), = E(hz - h3 - h4)| ag = h3; = h4- (713)

A HWS |a;) of SO(8) is by definition annihilated by the positive simple roots of
the SO(8) algebra:

THHI&') = THHg) = -|-++(77)|ai> — T(++)[’]{’}|a;) —0. (7.14)

To build G analytic superspaces we have to add one or more projectid@$ of

to the coset denominator. In choosing the subset of projections we have to make
sure that (i) they anticommute among themselves and (ii) the subset is closed
under the action of the raising operators of SO(8) (7.14). Then we have to examine
the consistency of the vanishing of the chosen projections with the conformal
superalgebra (7.9). Thus we find the following sequence of G analytic superspaces
corresponding to BPS states:

1 gite=0—
5 BPS: {cb(e++ oD, glElE)) (7.15)
D(ay + a; + 3(ag + &); 0;a1, &, as, au)

1 gfte =qitYe =0—
2 BPS: {®(0*T, 9<++) gIEIED (7.16)
D(az + 3(as + a4); 0; 0, a2, ag, au)
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q;_+CD — q£++)¢ — q‘g-‘r]{-&-}q) —0—

Z BPS: {®(0*, o) gl+HIE 9[—]{+}) (7.17)
D(3(as + as); 0; 0, 0,a3, as)

1 q;+<1> — q£++)¢ — qL+]{i}<D —0—

> BPS (type I): { &0+, oG+, =) (7.18)
D(3(as; 0;0, 0,a3, 0)

1 gftd =qitHe =gqFte =0

> BPS (type Il): {®(0+F, 01, gl (7.19)
D(3(as; 00, 0, 0,24)

Note the existence of two types of 2 BPS states because of the two possible
subsets of projections of closed under the raising operators of SO(8) (7.14).

We remark that in the caseg4, 3/8, and 12, the states are annihilated by
some of the lowering operators of SO(8). This means that certain subalgebras of
SO(8) act trivially on them:

1
7 SV (2) > (THED) T7=69) Hy — H, (7.20)
3. T++(77), T77(++), H; — Hy
g SUG < 1tea 7 1, Hy -, (2D
1 THED), T-6H H — H,
= SU4) < {TEDEIE TEDHIH Hy — Hy — Hy (7.22)
2 TH+, T H,
1 THED) T=6H H — H,
ZooSU@) o (TEDEE TEOHH Hy — Hg— Hy  (7.23)
2 TH, Tl H,

These properties are equivalent to the restrictions on the possible values of the
SO(8) Dynkin labels in (7.15)—(7.19). Note that the existence of two typegdf 1
BPS states can be equivalently explained by the two possible ways to embed SU(4)
in SO(8), as shown in (7.22) and (7.23).

7.2. Supersingletons and Harmonic Superspace

The supersingletons are the simplest O3p(&) representations of the type
(7.18) or (7.19) and correspond®{1,/2;0; 0, 0, 1, 0) oD>(1/2;0;0, 0, 0, 1)The
existence of two distinct types af = 3 N = 8 supersingletons has first been
noted in Gihaydinet al. (1986). Each of them is just a collection of eight Dirac
supermultiplets (Fronsdal, 1982) made out of “Di” and “Rac” singletons (Flato
and Fronsdal, 1978, 1980, 1981, 1986).
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To realize the supersingletons in superspace we note that the HWS in the two
supermultiplets above has spin 0 and the Dynkin labels of $lwr 8; of SO(8),
correspondingly. Therefore we take a scalar superdiglat”, 6*) (or >_,(x*, 6%))
carrying an external8ndexa (or an 8 indexa). These superﬂelds are subject to
the following on-shell constrair&

. 1 -
Typel: D! ®, = éy;bbeCDQCDC, (7.24)
. i 1
Type ll: D\ X5 = 8yabybcD e. (7.25)

The two multiplets consist of a massless scalar in th@8§ and spinor in the 8
(8s).
The harmonic superspace description of these supersingletons can be realized
by taking the harmonic cosét
SO(8) Spin(8)
[SO@F [U@*
Since SO(8)~ Spin(8) has three inequivalent fundamental representatigr,, 8
8,, following Galperinet al. (1992) we introduce three sets of harmonic variables:

(7.26)

uA, wA, v (7.27)
a a I

where A, A, and| denote the decompositions of ag 8., and § index, cor-
respondingly, into sets of four U(1) charges (see (7.6)—(7.8)). Each of the 8
8 real matrices (7.27) belongs to the corresponding representation of SO(8)
Spin(8). This implies that they are orthogonal matrices (this is a peculiarity of
SO(8) because of triality):

uAuB =648, wAWB =5"8 vVl =350 (7.28)

These matrices supply three copies of the group space, and we only need one
to parametrize the harmonic coset. The condition that identifies the three sets of

20see also Howe (1999) for the description of a supersingleton related to ours by SO(8) triality.
Superfield representations of otH@6p(N/4) superalgebras have been considered in Ivanov and
Sorin (1980) and Fabbeit al. (2000).

21 A formulation of the above multiplet in harmonic superspace has been proposed in Howe (1999)
(see also Zupnik and Khetselius (1988) and Howe and Leeming (1994) for a general discus-
sion of three-dimensional harmonic superspaces). The harmonic coset used in Howe (1999) is
Spin (8yU(4). Although the supersingleton itself does indeed live in this smaller coset (see
Section 7.5.4), its residual symmetd/(4) would not allow us to multiply different realizations
of the supersingleton. For this reason we prefer from the very beginning to use the coset (7.26) with
a minimal residual symmetry.
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harmonic variables 13
up (") aaWg = Vi (aa- (7.29)

Further, we introduce harmonic derivatives (the covariant derivatives on the
coset (7.26))

d - ag O d
D' = uA(')AB_L L WAL 1yAB_ 2 I ‘ 730
av'”) 8u§’+ a(v') W§+ i —8Vij] (7.30)
They respectthe algebraic relations (7.28) and (7.29) among the harmonic variables
and form the algebra of SO(8), realized on the indidgsA, | of the harmonics.
We now use the harmonic variables for projecting the supersingleton defining
constraints (7.24) and (7.25). Using the relation (7.29) it is easy to show that the

projectionsd M+l and £+ satisfy the following G-analyticity constraints:
DTt — pEH @ +HHIH — plHiE p+HIH — 0, (7.31)

DR+t — pEHHD+HEH — plHE g +HHEH — (7.32)

whereD! = v/ D!, ®* = uf®, andx” = w4 X,. This is the superspace realiza-
tion of the 2 BPS shortening conditions (7.18) and (7.19). In the appropriate
basis in superspacet ! and = +(H+} depend on different halves of the odd
variables as well as on the harmonic variables:

Type I: o (x,, 07+, 90 gl [y w) (7.33)
Type Il: ZTH (x, 07F, 009, g [y, w). (7.34)

In addition to the G analyticity constraints (7.31) and (7.32), the on-shell
superfieldsb I and =+ are subject to the SO(8) irreducibility harmonic
conditions obtained from (7.14) by replacing the SO(8) generators by the corre-
sponding harmonic derivatives. The combination of the latter with Eq. (7.31) is
equivalent to the original constraint (7.24).

It should be stressed that* I+l and =+ automatically satisfy ad-
ditional harmonic constraints involving lowering operators of SO(8) (cf. (7.22)
and (7.23)). As mentioned earlier, this means that the supersingleton harmonic
superfields effectively live in the smaller harmonic coset Spj#&a).

7.3. OSp(g4,R) Supersingleton Composites

One way to obtain short multiplets of OSp@R) is to multiply different
analytic superfields describing the Type | supersingleton. The point is that pre-
viously we chose a particular projection of, for example, the defining constraint

22 plthough each of the three sets of harmonic variables depends on the same 28 parameters, we need
at least two sets to be able to reproduce all possible representations of SO(8).
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(7.24) that lead to the analytic superfighd (F[*1. We could have done this in a
variety of ways, each time obtaining superfields depending on different halves of
the total number of odd variables. Leaving out thdd@vest weightt~—, we can
have four distinct but equivalent analytic descriptions of the Type | supersingleton:

PN+ (9++ g+ pltlit}

HTHI= (9++ 9(++) pl-1{+
QHONH (gt o) gl
¢+(—){—}(9++, o), pltli=} 9[ 1=
Then we can multiply them in the following way:
(q)+(+)[+])P+Q+r+s(q>+(+)[—])Q+r+s(q>+(—){+})’+S(q,+(—){—})5, (7.36)

thus obtaining three series of OSp8R) UIRs exhibiting ¥8, 1/4, or 1/2 BPS
shortening:

1 1
éBPSi D(al +az+ E(as + as), 0;a4, a, ag, 34), a—au=2=>0;

)
)
™),
)

, (7.35)

1 1

1 1
EBPS: D(Eag, 0;0, 0,as, 0) (7.37)

where
a=r+2s, a =q, az=p, as=". (7.38)

We see that multiplying only one type of supersingletons cannot reproduce
the general result of Section 7.1 for all possible short multiplets. Most notably, in
(7.37) there is no B series. The latter can be obtained by mixing the two types
of supersingletons:

[q>+(+)[+] (6*+, ), 9[+]{i})]a3[2+(+){+1 6+, g, 9[i1{+})]34 (7.39)

(or the same withb andX exchanged). Counting the charges and the dimension,
we find exact matching with the series (7.17):

3

1
gBPS: D(g(as +a4);0;0, 0,a3, a4). (7.40)

Further, mixing two realizations of Type | and one of Type Il supersingletons, we
can construct the/4 series

[@ ][ DT S+, (7.41)
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which corresponds to (7.16):

1 1
2 BPS: D(az + E(ag + ay4); 0;0,a,, a, a4>. (7.42)

Finally, the full 1/8 series (7.15) (i.e., without the restrictiapn— a; = 2s > 0 in
(7.37)) can be obtained in a variety of ways.

Inthis section we have analyzed all short highest-weight UIRs of the G&p(8
R) superalgebra whose HWSs are annihilated by part of the super-Roiaar”
generators. The number of distinct possibilities have been shown to correspond to
different BPS conditions on the HWS. When the algebra is interpreted on the AdS
bulk, for which the 3d superconformal field theory corresponds to the boundary
M-2 brane dynamics, these states appear as BPS massive excitations, such as K-K
states or AdS black holes, of M-theory on AdS S’. Since in M-theory there is
only one type of supersingleton related to the M-2 brane transverse coordinates
(Duff, 1987, 1988), according to our analysis massive states canngiBoBrRsS
saturated, exactly as it happens in M-theoryMf x T’. Indeed, the missing
solution was also noticed in Duff and Liu (1999) by studying Adfack holes in
gaugedN = 8 supergravity. Curiously, in the ungauged theory, which is in some
sense the flat limit of the former, the¢@ BPS states are forbidden (Ferrara and
Glnaydin, 1998; Ferrara and Maldacena, 1998) by the underlyipgsgmmetry
of N = 8 supergravity (Cremmer and Julia, 1979).

7.4. Series of UIRs of OSp(g4, R)

In the cases of even dimensidn= 4, 6, we had supersingleton superfields
carrying eithelR symmetry indices, Lorentz indices, or just conformal dimension.
Multiplying them we were able to reproduce the corresponding general series of
UIRs. In the case afl = 3, the situation is different, since we have only two su-
persingletons carrying SO(8) spinor indices. Multiplying them we could construct
the short objects of the BPS type considered above. Yet, for reproducing the most
general UIRs (see Minwalla (1998)), we need short objects with spin but without
SO(8) indices. These arise in the form of conserved currents. The simplest one is
a Lorentz scalar and an SO(8) singletof dimension? = 1. It can be realized
as a bilinear of two supersingletons of the same type, for exampie ®,®, or
W = X3%,. Using (7.24) or (7.25) one can show that it satisfies the constraint (a
non-BPS shortness condition)

o 1 ..
D! Dl*w = éa'J DXD*aw, (7.43)

The other currents carry SL(Z) spinor indiceswy,...,;, have dimensiort =
1+ J and satisfy the constraint (Park, 1999)

D' W,y = O. (7.44)
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They can be constructed as bilinears of the two types of supersingletons (for half-
integer spin) or of two copies of the same type (for integer spin). For example, the
two lowest onesd = 1/2 andJ = 1) are

W, = 1 (Dl @b Zh — PpD}, ), (7.45)

Weop = Dl ®a(y'v)abD )y @p + 32 (Padus @) — dopPa®)).  (7.46)

They are easily generalized to

n
Way-oamys = Y O _(— 1) (7.47)
k=0

i .
(3(011012 T 8a2k—1012k Da2k+1q)b80t2k+20tzk+3 o 8052n—1a2n)2b

i -
- a(aﬂlz T aaZk—lﬂqu)baaZkJrlﬂkaJrZ t 80(2n—10(2n D )Zb)’

A2n+1

Woyoay = Xn:(—l)k (7.48)
k=0

[a(ﬂtlaz T aazkflazk D:x2k+1q)a(7/l VJ )ab D(i2k+2 80!2k+3012k+4 T aaZn—laZn)(Di)
+32 8(01112 T aazkadzk cbaaa2k+10¢2k+2 te 8a2n—1012n)q):':1]

(note that ifn = 2m the two supersingletond, and®/, can be identical).
The generic “long” UIR of OSp(&, R) can nhow be obtained as a product of
all of the above short objects:

Wo,..r, WBPSay, 82, ag, au]. (7.49)

Here we have used the first factor to obtain the spin, the second one for the
conformal dimension and the BPS factor for the SO(8) quantum numbers. The
unitarity bound is given by

1
621-’-\]-’-&14—&2-}-5(&34-34) (7.50)

and is saturated K = 0 in (7.49). The object (7.49) is short if (@ # 0 andk = 0

(then it satisfies the intersection of (7.44) with the BPS conditions)J () 0 and

k = 1 (then it satisfies the intersection of (7.43) with the BPS conditions);J(i)

0 andk = 0 (then it is BPS short). These results exactly match the classification
of Minwalla (1998).
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7.5. BPS States of OSp(84, R)

Here we give a summary of all possible OSp{8R) BPS multiplets. Denot-
ing the UIRs by

D(¢; J; a1, ap, a, &), (7.51)

wheret is the conformal dimensior, is the spin, an@y, a,, as, a4 are the SO(8)
Dynkin labels, we find four BPS conditions:

7.5.1.

1
éBPS: g/t =0. (7.52)
The corresponding UIRs are
1
D(a1+a2+ >(@a+a); 04y, 22, &, a4> (7.53)

and the harmonic coset is
Spin(8)

. (7.54)
[u)*
If a, = ag = a4 = 0 this coset becomes Spin(8)(4).
7.5.2.
1
2 BPS: g/t =q{*? =0. (7.55)
The corresponding UIRs are
1
D<az +5(@s +24):00, 82, 2, a4) (7.56)
and the harmonic coset is
Spin(8)
_— 7.57
VP x UE) (757
If a3 = a4 = 0 this coset becomes Spinf8)(1) x [SU(2)F.
7.5.3.
3
~BPS: gt =q{"" =gl = 0. (7.58)

8
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The corresponding UIRs are

1
D(g(as +a4); 0;0, 0,as, a4)

and the harmonic coset is
Spin(8)
U@1) x U@3)’

7.5.4.

%BPS (type |) q;“"' — L§++) — q[+][+] — L""]{i} — O’

o

%BPS (type Il): qf " =q{™" = glHi+ = g+ =0,

The corresponding UIRs are

1 1
EBPS (type I): D(Eag; 0;0, 0,as, 0);

1 1
EBPS (type 1I): D<§a4; 0;0,0, 0,a4).

and the harmonic coset is
Spin(8)
u@) -

8. CONCLUSIONS

979

(7.59)

(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)

Here we give a summary of the different types of BPS states that are realized
as products of supersingletons described by G-analytic harmonic superfields. We
shall restrict ourselves to the physically interesting cases of @3,and Ms
branes horizon geometry where only one type of such supersingletons appears.
This construction gives rise to a restricted class of the most general BPS states.

8.1. PSU (2, 74)

The BPS states are constructed in terms ofthe 4,d = 4 super-Yang-Mills

multiplet W'l in three equivalent G analytic realizations:

(W12(93,4, 9_1'2)) prasr (W13(92,4, 9_1'3))(1+r (W23(91,4, 672'3))r .

(8.1)
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BPS SuU(4) Dimension Harmonic space
3 (0, p, 0) p SU(4)S(U(2) x U(2))
i (@pa p+ 29 SUM@YU@)®
1 (@p.g+2r) p+2g+3r SU@YUD)R
(0, p, 2r) p+ 3r SU(4YU(1) x U(2)
(0, 0, 2r) 3r SU4)U(3)

8.2. OSp(8%/4)

~ The BPS states are constructed in terms of the (8,8)6 tensor multiplet
Wit in two equivalent G-analytic realizations:

(W12(91,2) p+q (WlS(Ql'S))q. (82)

BPS USp(4) Dimension Harmonic space

3 ©0.,p) 2p USp(4)u(2)
i (20,p) 2p+4q  USp(4y[u(1))?
(29,0) 4q USp(4U(2)

8.3. OSp(g/4,R)

The Type | BPS states are constructed in terms ofthe 8, d = 3 matter
multiplet ®, carrying an external 8S ((8) spinor index in four equivalent G-
analytic realizations:

oI (9++ () [ PHATT S

atr+s

<D+(_)

[

[+ (] (gl
[ (

[0+ O] (g

)

g
g+ )+ )]f+s

)I"

s (8.3)
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BPS SO(8) Dimension Harmonic space
3 (0,0, p, 0) ip Spin(8yU(4)

i 0,q9,p,0) 3(p+29) Spin(8yU(2) x U(2)
z (r+2s,0,p,1) 3(p+29+3r+4s) Spin8Y[UL)]*

The Type Il BPS states are constructed in terms ofNhe 8, d = 3 mat-
ter multiplet X5 carrying an external 8SQ(8) spinor index in four equivalent
G analytic realizations:

[Z+(+)[+] (9++,(++),[i]{+})] p+a+r+s
[2+(+){7}(9++,(++),[i1{7})]q+f+5
[2+GM+%9++&—AJ+MH)T+SX
[= +(=)-] (9++,(——),[—]{i})]5_ (8.4)
BPS SO(8) Dimension Harmonic space
3 (0,0,0,p)  3p Spin(8yU(4)
; (0,0,0,p)  3(p+20q) Spin(8yU(2) x U(2)
: (r+2s,0,1,p) 3(pP+29+3r +4s) Spin(8Y[U(1)]*
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