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We carry out a general analysis of the representations of the superconformal algebras
SU(2, 2/N), OSp(8/4, R), and OSp(8*/2N) and give their realization in superspace.
We present a construction of their UIRs by multiplication of the different types of mass-
less superfields (“supersingletons”). Particular attention is paid to the so-called “short
multiplets.” Representations undergoing shortening have “protected dimension” and
may correspond to BPS states in the dual supergravity theory in anti-de Sitter space.
These results are relevant for the classification of multitrace operators in boundary con-
formally invariant theories as well as for the classification of AdS black holes preserving
different fractions of supersymmetry.

1. INTRODUCTION

The study of superconformal algebras has recently become of central impor-
tance because of their dual rˆole in describing the gauge symmetries of supergrav-
ity in anti-de Sitter bulk and the global symmetries of the boundary field theory
(Gubseret al., 1998; Maldacena, 1998; Witten, 1998).

A special class of configurations that are particularly relevant are the so-
called BPS states, that is, dynamical objects corresponding to representations that
undergo “shortening.”

These representations can only occur when the conformal dimension of a
(super)primary operator is “quantized” in terms of the R symmetry quantum num-
bers and they are at the basis of the so-called “nonrenormalization” theorems of

1 Just before submitting this paper to the hep-th archive, we saw a new article by P. Heslop and P. S.
Howe (2000). It partially overlaps with our treatment of thed = 4 case.
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supersymmetric quantum theories (Ferraraet al., 1974; Iliopoulous and Zumino,
1974; Wess and Zumino, 1974).

There exist different methods of constructing the UIRs of superconformal al-
gebras. One is the so-called oscillator construction of the Hilbert space in which a
given UIR acts (Bars and G¨unaydin, 1983; Duff, 1999; G¨unaydin, 1982; G¨unaydin
and Hyun, 1988; G¨unaydin and Marcus, 1985; G¨unaydin et al., 1998, 1999;
Günaydin and Saclioglu, 1982a,b; Nicolai, 1984). Another one, more appropriate
to describe field theories, is the realization of such representations on superfields
defined in superspaces (Ferraraet al., 1974; Salam and Strathdee, 1974). The lat-
ter are “supermanifolds,” which can be regarded as the quotient of the conformal
supergroup by some of its subgroups.

In the case of ordinary superspace the subgroup in question is the supergroup
obtained by exponentiating a nonsemisimple superalgebra, which is the semidirect
product of a super-Poincar´e graded Lie algebra with dilatation (SO(1, 1)) and the
R symmetry algebra. This is the superspace appropriate for non-BPS states. Such
states correspond to bulk massive states, which can have “continuous spectrum”
of the AdS mass (or, equivalently, of the conformal dimension of the primary
fields).

BPS states are naturally associated to superspaces with lower number of
“odd” coordinates and, in most cases, with some internal coordinates of a coset
spaceG/H . HereG is the R symmetry group of the superconformal algebra, that
is, the subalgebra of the even part that commutes with the conformal algebra of
space-time, andH is some subgroup ofG having the same rank asG.

Such superspaces are called “harmonic” (Galperinet al., 1984) and they are
characterized as having a subset of the initial odd coordinatesθ . The complemen-
tary number of odd variables determines the fraction of supersymmetry preserved
by the BPS state. If a BPS state preservesK supersymmetries then theθs of the
associated harmonic superspace will transform under some UIR ofHK .

For 1/2 BPS states, that is, states with maximal supersymmetry, the super-
space involves the minimal number of odd coordinates (half of the original one)
andHK is then a maximal subgroup ofG. On the other hand, for states with the
minimal fraction of supersymmetryHK reduces to the “maximal torus” whose Lie
algebra is the Cartan subalgebra ofG.

It is the aim of this paper to give a comprehensive treatment of BPS states
related to “short representations” of superconformal algebras for the cases that
are most relevant in the context of the AdS/CFT correspondence, that is, for
d = 3 (N = 8), d = 6, andd = 4 (for arbitrary N). The underlying conformal
field theories correspond to world-volume theories ofNc copies ofM2, M5, and
D3 branes in the largeNc limit (Aharonyet al., 1998; Aharonyet al., 1998; Claus
et al., 1998; Ferraraet al., 1998; Halyo, 1998; Leigh and Rozsli, 1998; Minwalla,
1998) that are “dual” to AdS supergravities describing the horizon geometry of
the branes (Aharonyet al., 2000).
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Some of the results presented in this paper have already appeared elsewhere
(Andrianopoli, 1998; Ferrara and Sokatchev, 1999, 2000, 2000).6 Here we give
a systematic and unified treatment of the BPS states corresponding to the three
superconformal algebras discussed previously. The method we use in developed in
full detail in the case ofd = 4 superconformal algebra SU(2, 2/N) in Sections 2–5.
In Section 2 we carry out an abstract analysis of the conditions for Grassmann (G)
analyticity (Galperinet al., 1981) (the generalization of the familiar concept of
chirality (Ferraraet al., 1974)) in a superconformal context. We find the constraints
on the conformal dimension and R symmetry quantum numbers of a superfield
following from the requirement that it does not depend on one or more Grassmann
variables. Introducing G analyticity in a traditional superspace cannot be done with-
out breaking the R symmetry. The latter can be restored by extending the superspace
by harmonic variables (Bandos, 1988; Galperinet al., 1984; Galperinet al., 1985;
Galperinet al., 1987; Ivanovet al., 1985; Kallosh, 1985; Rosly, 1983, 1985; Rosly
and Schwarz, 1986) parametrizing the cosetG/HK . In Section 3 the (N, p, q)
harmonic superspaces (Galperinet al., 1987; Hartwell and Howe, 1995a,b) rele-
vant to the description of BPS states preservingp+ q/2N supersymmetries are
reviewed. In Section 4 the massless UIRs (“supersingleton” multiplets) (Binegar,
1986; Dobrev and Petkova, 1985, 1987; Flato and Fronsdal, 1978, 1980, 1981,
1986; Fronsdal, 1982) of SU(2, 2/N) are considered, first as constrained super-
fields in ordinary superspace (Howeet al., 1981; Siegel, 1981) and then, for a part
of them, as (N, p, N − p) G-analytic harmonic superfields (Galperinet al., 1984;
Hartwell and Howe, 1995a,b). In Section 5 we use supersingleton multiplication
to construct UIRs of SU(2, 2/N). We show that in this way one can reproduce the
complete classification of UIRs of Dobrev and Petkova (1985, 1987). We give the
full list of BPS states obtained by multiplying chiral and G-analytic supersingletons
as well as the restricted classes of BPS states obtained from one type of G-analytic
supersingleton alone. We also discuss different kinds of shortening that certain su-
perfields (not of the BPS type) may undergo. In Sections 6 and 7 we apply the same
method to extend these results tod = 6 andd = 3 for the superalgebras of the max-
imal supersymmetries, that is, OSp(8∗/2N) and OSp(8/4, R). We conclude the
paper by listing the various BPS states in the physically relevant cases of D3,M2,
andM5 branes horizon geometry where only one type of supersingletons appears.

Applications of the present results are found (Andrianopoliet al., 1999;
Ferrara and Zaffaroni, 1999) in the classification of multitrace operators in four-
dimensionalN = 4 SU(Nc) Yang–Mills theory (Bianchi and Kovacs, 1999; Bianchi
et al., 1999; Chalmers and Schalm, 1999; D’Hokeret al., 1999; D’Hokeret al.,
1999; Skiba, 1999), dual to type IIB supergravity on AdS5× S5 (Maldacena, 1998,
1999).

6 The new results were reported by one of us at the Workshop on “Strings, Branes and M-theory” at
the CIT-USC Center for Theoretical Physics, Los Angeles, California on April 5 and 7, 2000.
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Another area of interest is the classification of AdS black holes (Behrndt,et al.,
1998; Chamblinet al., 1999; Duff and Liu, 1999; Hawkinget al., 1999) according
to the fraction of supersymmetry preserved by the black hole background.

In a parallel analysis with black holes in asymptotically flat background
(Ferrara and G¨unaydin, 1998; Ferrara and Maldacena, 1998), the AdS/CFT corre-
spondence predicts that such BPS states should be dual to superconformal states
undergoing “shortening” of the type discussed here.

2. GRASSMANN ANALYTICITY AND CONFORMAL
SUPERSYMMETRY

In this section we shall study the realizations ofD = 4 N-extended conformal
supersymmetry SU(2, 2/N) on superfields depending on a subset of the 4N odd
variables. Such superfields will be called G analytic.

The nonvanishing (anti)commutation relations involving the odd generators
of the superalgebra SU(2, 2/N) are given below:{

Qi
α, Q̄α̇ j

} = 2δi
j (σ

µ)αα̇Pµ,{
Sα j , S̄i

α̇

} = 2δi
j (σ

µ)αα̇Kµ,{
Qi
α, Sβj

} = −δi
j (σ

µν)βαMµν − 4δβαTi
j − 2δβα δ

i
j (R+ i D),[

Qi
α, Kµ

] = −(σµ)αα̇ S̄α̇i , [Q̄α̇i , Kµ] = (σµ)αα̇Sαi ,

[Sαi , Pµ] = −(σµ)αα̇ Q̄α̇
i ,

[
S̄i
α̇, Pµ

] = (σµ)αα̇Qαi , (2.1)

Here the odd generators are7 : Qi
α, Q̄α̇i = (Qi

α)† of Poincaré supersymmetry and
Sαi , S̄i

α̇ = (Sαi )† of special conformal supersymmetry. The even generators are as
follows: Pµ of translations,Kµ of conformal boosts,Mµν = −Mνµ of the Lorentz
group,D of dilatations,Ti

j of SU(N), andR of U (1) (“R charge”).
Further, the Lorentz and SU(N) generators commute withQ as follows:

[Mµν , Qα] = −1

2
(σµν)

β
αQβ , [Mµν , Q̄α̇] = 1

2
(σ̃µν)

β̇
α̇ Q̄β̇ , (2.2)

[
Ti

j , Qk
] = δk

j Qi − 1

N
δi

j Q
k,

[
Ti

j , Q̄k
] = −δi

k Q̄ j + 1

N
δi

j Q̄k, (2.3)

and similarly forS. Next, the commutators ofQ andS with the dilatation and R
charge generators are given below:

[D, Q] = i

2
Q, [D, Q̄] = i

2
Q̄;

7 Two-component spinor indices are raised and lowered with the help of the Levi–Civita tensor:
ψα = εαβψβ , χ̄ α̇ = εα̇β̇ χ̄β̇ , ψα = εαβψβ , χ̄α̇ = εα̇β̇ χ̄ β̇ ; ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1.
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[D, S] = − i

2
S, [D, S̄] = − i

2
S̄; (2.4)

[R, Q] = 4− N

2N
Q, [R, Q̄] = −4− N

2N
Q̄;

[R, S] = −4− N

2N
S, [R, S̄] = 4− N

2N
S̄. (2.5)

Finally, the SU(N) generatorsTi
j , (Ti

j )
†,
∑N

i=1 Ti
i = 0 form the algebra[

Ti
j , Tk

l

] = δk
j T

i
l − δi

l T
k
j . (2.6)

The rest of the superalgebra SU(2, 2/N) is the conformal algebra ofM , P, K , D,
which will not be needed here.

The superspace traditionally used for the realization of SU(2, 2/N) (as well
as for Poincar´e supersymmetry) is given by the real coset

R4|2N,2N = SU(2, 2/N)

{K, S, S̄, M, D, T, R} =
(
xµ, θαi , θ̄ α̇i

)
. (2.7)

It is parametrized by four even coordinatesxµ and 2N left-handed odd spinor co-
ordinatesθαi in the fundamental of SU(N) together with the 2N right-handed com-
plex conjugates̄θ α̇i = θαi . The superalgebra is realized on superfields8(x, θ , θ̄ )
defined as functions in the coset (2.7). The generators of the coset denominator
K , S, S̄, M, D, T, R act on the superspace coordinates as well as on the external
indices of the superfield. The latter action is given by the matrix parts of these gener-
ators,Kµ→ kµ, Sαi → sαi , S̄i

α → s̄i
α, Mµν → mµν , D→ i `, Ti

j → t i
j , R→ r .8

According to the definition of a (super)conformal primary field, the matrix parts
of the transitive generatorsK andSvanish:

sαi8 = s̄i
α̇8 = kµ8 = 0 (2.8)

(the third constraint follows from the first two, see (2.1)). The homogeneous action
of the remaining ones,d, l , r, t , on the superfield and, in particular, on its lowest
componentφ(x) = 8|θ=θ̄=0 defines the latter as an irrep of SO(1, 1)× SL(2,
C) × U(1)× SU(N) with the following quantum numbers:

D(`; j1, j2; r ; a1, . . . , aN−1) (2.9)

wherè is the conformal dimension,j1 and j2 are the two Lorentz quantum numbers
(“spins”), r is the R charge anda1, . . . , aN−1 are the SU(N) Dynkin labels.

8 We assign the R chargerθ = −(4− N)/2N to the left-handed Grassmann coordinatesθα in order
to be consistent with the convention that chiral superfields8(θ ) haver = −` for anyN (see (2.13)).
Note that forN = 4, rθ = 0 and ther quantum number becomes a “central charge” (Binegar, 1986;
Dobrev and Petkova, 1985, 1987). In this case one refers to the PSU(2, 2/4) algebra forr = 0 and
to the PU(2, 2/4) algebra forr 6= 0.
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2.1. Chiral Superfields

The superalgebra SU(2, 2/N) can be realized in a smaller superspace, called
“chiral” superspace. It is obtained by adding half of the Poincar´e supersymmetry
generators, for instance, the right-handed ones,Q̄α̇

i , to the coset denominator:

C4|2N,0 = SU(2, 2/N)

{K , S, S̄, M, D, T, R, Q̄} =
(
xµ, θαi

)
. (2.10)

This means adding a new constraint to the set (2.8):

q̄α̇i 8 = 0 (2.11)

whereq̄ is the matrix part of the generator̄Q. However, in this case the superalge-
bra (2.1) implies restrictions on the allowed values of the quantum numbers (2.9)
(Wess and Zumino, 1974b). Indeed, the constraints (2.11) and (2.8) yield the com-
patibility condition{

q̄α̇i , s̄ j
β̇

}
8 = [−δ j

i (σµν)α̇
β̇
mµν − 2δα̇

β̇

(
2t i

j + δ j
i (`+ r )

)]
8 = 0. (2.12)

This is only possible if the superfield (i.e., its first component (2.9)) carries no
right-handed spin, no SU(N) indices and has R charger = −`:

C4|2N,0⇒ D(`; j1, 0;−`; 0, . . . , 0). (2.13)

Such superfields are called (left-handed) chiral. Note that both the superspace (2.10)
and the superfields defined in it are complex.

Given a general superfield8(x, θ , θ̄ ), one can restrict it to the coset (2.10)
by imposing the following differential “chirality” constraint (Ferraraet al., 1974)

D̄α̇
i 8(x, θ , θ̄ ) = 0. (2.14)

HereD̄ is the right-handed half of the “covariant spinor derivatives”

Di
α =

∂

∂θαi
+ i θ̄ α̇i (σµ)αα̇∂µ, D̄α̇i = − ∂

∂θ̄ α̇i
− i θαi (σµ)αα̇∂µ. (2.15)

Note that these derivatives are only covariant with respect to the super-Poincar´e
subalgebra of SU(2, 2/N). They obey the following anticommutation relations:{

Di
α, D j

β

} = {D̄α̇i , D̄β̇ j } = 0,
{
Di
α, D̄β̇ j

} = −2i δi
j (σ

µ)αβ̇∂µ. (2.16)

A crucial observation is that the chirality constraint (2.14) can be solved by going
to the “left-handed chiral” basis

xµL = xµ + i θLiσ
µθ̄ i

L , θαLi = θαi , θ̄ α̇i
L = θ̄ α̇i . (2.17)

There D̄ becomes just a partial derivative,̄Dα̇i = −∂/∂θ̄ α̇i
L , so (2.14) simply

implies

8 = 8(xµL , θαLi

)
. (2.18)
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An important property of the chiral superfields (2.18) is that the product of two of
them is still a chiral superfield, that is, they form a “ring structure.” Note the close
analogy with the typical property of ordinary analytic functions. As we shall see
in the next subsection, this analogy can be further developed.

2.2. Grassmann Analytic Superfields

A natural question is whether or not one can find other realizations of
SU(2, 2/N) in superspaces involving only part of the odd coordinates. In the chiral
case discussed previously, we chose to add all of the right-handed generatorsQ̄α̇

i ,
which form an irrep of SU(N), to the coset denominator. Now, let us assume for
a moment the possibility to break SU(N).9 We can then take just one of theQs
or theQ̄s, for example,Q1

α and put it in the denominator. The resulting coset has
2N − 2 left-handed and 2N right-handed odd coordinates:

A4|2N−2,2N = SU(2, 2/N)

{K , S, S̄, M, D, T, R, Q1} =
(
xµ, θα2 , . . . , θαN , θ̄1

α̇ , . . . , θ̄N
α̇

)
(2.19)

This means replacing the chirality condition (2.11) by

q1
α8 = 0. (2.20)

Then, a compatibility condition analogous to (2.12) follows from the anticommu-
tator {

q1
α, sβ1

}
8 = [−(σµν)βαmµν − 2δβα

(
2t1

1 − `+ r
)]
8 = 0. (2.21)

It implies (σµν)αβmµν8 = 0, that is, no left-handed spin, as well as a relation
between the eigenvalue of the SU(N) generatort1

1 , the R charge and the conformal
dimension:

j1 = 0, 2t1
1 = `− r. (2.22)

Further, anticommutingq1
α with the remaining projectionssβ2,3,...,N , we obtain

t1
i = 0, 2≤ i ≤ N. (2.23)

Let us now make a digression and discuss the SU(N) generatorst i
j . In the

Cartan decomposition of the SU(N) algebra (2.6) the generators with 1≤ i < j ≤
N are associated to the positive roots (“raising operators”). Among themt i

i+1, i =
1, . . . , N − 1 correspond to the simple roots, which means that the other raising
operators are obtained by commuting the simple ones. Similarly, the generators
with N ≥ i > j ≥ 1 are associated to the negative roots (“lowering operators”),
the simple ones beingt i+1

i , i = 1, . . . , N − 1. Finally, theN − 1 independent

9 Superspaces of this type can be introduced without breaking SU(N) in the framework of harmonic
superspace, see Section 3.
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generatorst i
i (recall that

∑N
i=1 t i

i = 0) define theN − 1 charges of the Cartan
subalgebra of [U(1)]N−1 ⊂ SU(N) as follows:

mk = tk
k − t N

N = tk
k +

m

N
, 1≤ k ≤ N, m=

N∑
i=1

mi (2.24)

wheremN ≡ 0. An irrep of SU(N) is generated from the highest weight state
(HWS) |a1, . . . , aN−1〉 specified, for example, by the Dynkin labels defined by

ak = mk −mk+1 ≥ 0, 1≤ k ≤ N − 1. (2.25)

Correspondingly, the charges (2.24) of a HWS take eigenvaluesm1 ≥ m2 ≥ . . .
mN−1 ≥ mN = 0. In the language of Young, tableauxmk is just the number of
boxes in thekth row. The HWS is by definition annihilated by all the raising
operators:

t i
j |a1, . . . , aN−1〉 = 0, 1≤ i < j ≤ N. (2.26)

In these terms, conditions (2.23) are just a subset of the irreducibility condi-
tions (2.26). From (2.22) we obtain the following restrictions on the quantum
numbers:

2m

N
− 2m1 = r − `. (2.27)

We can go on and consider a superspace of the type (2.19) where the first
p θs are missing:

A4|2N−2p,2N = SU(2, 2/N)

{K , S, S̄, M, D, T, R, Q1, . . . , Qp}
= (xµ, θαp+1, . . . , θαN , θ̄1

α̇ , . . . , θ̄N
α̇

)
. (2.28)

As before, this means to impose

qi
α8 = 0, 1≤ i ≤ p. (2.29)

Then, from the anticommutators{qi
α, sβi } = 0, 1≤ i ≤ p we obtain conditions

similar to (2.27):

2m

N
− 2mi = r − `, 1≤ i ≤ p. (2.30)

Also, {qi
α, sβj } = 0 for 1≤ i < j ≤ p yields a bigger subset of the irreducibility

conditions (2.26). In addition, this time we obtain a new type of condition:

t i
j |a1, . . . , aN−1〉 = 0, p ≥ i > j ≥ 1. (2.31)
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The generators in (2.31) are lowering operators of SU(N). In fact, these new
constraints are corollaries of (2.30). Indeed, from (2.30) follows

a1 = · · · = ap−1 = 0 for p ≥ 2. (2.32)

Now, the HWS|a1, . . . , aN−1〉 has the property10(
tk+1
k

)ak+1|a1, . . . , aN−1〉 = 0. (2.33)

Then it is obvious that (2.32) and (2.33) imply (2.31).
The argument above can be reversed. Take a superfield defined in the su-

perspaceA4|2N−2,2N (2.19) whose lowest component is in the SU(N) irrep with
Dynkin labels [0,. . . , 0,ap, . . . , aN−1], p > 1. Then (2.31) holds and combining
it with the constraint (2.20), we obtain the full set of constraints (2.29). Thus, such
a superfield effectively lives in a smaller superspace.

It is clear that we can repeat the same procedure in the right-handed sector.
This time the starting point will be a superspace whereθ̄N

α̇ is absent (note that in
our conventionq1 andq̄N are the HWSs of the fundamental irrep of SU(N) and of
its conjugate, respectively). From the corresponding conditionq̄α̇N8 = 0 we derive

j2 = 0,
2m

N
= `+ r. (2.34)

Going on and removingq right-handed odd variables,̄θN
α̇ , . . . , θ̄N−q+1

α̇ , that is,
imposing the constraints

q̄α̇i 8 = 0, N − q + 1≤ i ≤ N, (2.35)

in addition to (2.34) we find

mi = 0, N − q + 1≤ i ≤ N − 1 for q ≥ 2. (2.36)

As before, this implies the vanishing of the lastq − 1 Dynkin labels:

ai = 0, N − q + 1≤ i ≤ N − 1 for q ≥ 2. (2.37)

Correspondingly, the HWS is annihilated by the lowering operatorst i
j , N ≥ i >

j ≥ N − q + 1.
Finally, we can combine left- and right-handed constraints and define the

most general G-analytic superspace as follows:

A4|2N−2p,2N−2q = SU(2, 2/N)

{K , S, S̄, M, D, T, R, Q1, . . . , Qp, Q̄N−q+1, . . . , Q̄N}
= (xµ, θαp+1, . . . , θαN , θ̄1

α̇ , . . . , θ̄N−q
α̇

)
, p+ q ≤ N. (2.38)

10The explanation is as follows. The generatorstk+1
k , tk

k+1, andtk
k − tk+1

k+1 form the algebra of SU(2)k ⊂
SU(N). The state|a1, . . . , aN−1〉 can be regarded as the HWS of an irrep of this SU(2)k of U(1)
chargeak, that is of dimensionak + 1. Equation (2.33) then follows from the fact thattk+1

k is the
lowering operator of SU(2)k.
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Following Hartwell and Howe (1995a,b) we shall call (2.38) an “(N, p, q) su-
perspace.”11 It is important to realize that anticommuting theQs andQ̄s in the
denominator should not produce the translation generatorPµ that belongs to the
coset. This explains the conditionp+ q ≤ N in (2.38). The superfields defined in
this coset are annihilated by a subset of the Poincar´e supersymmetry generators:

qi
α8 = q̄α̇j 8 = 0, 1≤ i ≤ p, N − q + 1≤ j ≤ N. (2.39)

These conditions lead to restrictions on the quantum numbers obtained by com-
bining the ones found above:

j1 = j2 = 0;

` = m1;

r = 2m

N
−m1;

m1 = m2 = · · · = mp,

mi = 0, N − q + 1≤ i ≤ N − 1, q ≥ 2. (2.40)

Such SU(N) representations have the firstp− 1 and the lastq − 1 Dynkin labels
vanishing:

[0, . . . , 0,ap, . . . , aN−q, 0, . . . , 0]. (2.41)

An interesting limiting case is obtained whenp+ q = N. Such superspaces
contain exactly one half of the initial number of Grassmann variables (p left-
handed andN − p right-handed spinors). The SU(N) representation of the lowest
component of the superfield has only one nonvanishing Dynkin label,ap 6= 0.
Consequently,̀ = ap andr = ( 2p

N − 1)ap. In Section 4 we shall see that in the
special caseap = 1 such superfields describe some of the massless superconformal
multiplets.

We remark that chiral superspace can be viewed as a limiting case of the
above when, for example,p = 0 andq = N. In this case onlyj1 = 0, the other
Lorentz quantum numberj2 remains arbitrary.

3. (N, p,q) HARMONIC SUPERSPACE

The chiral superspace introduced in Section 2.1 is naturally realized in terms
of superfields satisfying a differential constraint of the type (2.14). The question
arises if we can formulate similar differential constraints restricting a superfield to
the G-analytic superspaces of Section 2.2. It is quite clear that one should impose
constraints similar to (2.39) with the supersymmetry generators replaced by spinor
covariant derivatives. The only problem is that in (2.29) we have explicitly broken

11The first example of a (3, 2, 1) superspace was given in Galperinet al. (1987).
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the SU(N) invariance, just like when the concept of G analyticity (N = 2) was
first introduced in Galperinet al. (1981). This can be repaired by extending the
framework of standard superspace to the so-called harmonic superspace (Galperin
et al., 1984).

3.1. Harmonic Variables on the Coset SU(N)/[U(1)]N−1

Harmonic superspace is obtained from the ordinary one (2.7) by tensoring it
with a coset of the group SU(N)/H whereH is a maximal subgroup of SU(N).
To be able to describe the most general case of G-analytic superfields one has to
choose the smallest such subgroup, which is the Cartan subgroup [U(1)]N−1. The
resulting coset SU(N)/[U(1)]N−1 (introduced in Galperinet al.(1984) forN = 2,
in Galperinet al.(1985); Kallosh (1985); Rosly and Schwarz (1986) forN = 3 and
in Bandos (1988) for arbitraryN) is a compact complex manifold (“flag manifold”
(Knapp, 1977, 1986; Hartwell and Howe, 1995a,b)) of complex dimensionN(N −
1)/2. Note, however, that (N, p, q) superfields forp ≥ 2 and/or q ≥ 2 effectively
live in the smaller cosets SU(N)/[U(1)]N−p−q+1×SU(p)×SU(q), as we shall
explain later (see also Hartwell and Howe (1995a,b)).

3.1.1. Covariant Description of the Coset SU(N)/[U(1)] N−1

The harmonic variablesuI
i and their conjugatesui

I = (uI
i )∗ form an SU(N)

matrix wherei is an index in the fundamental representation of SU(N) and I =
1, . . . , N are the projections of the second index onto the subgroup [U(1)]N−1.
Further, we define twoindependentSU(N) groups, a left one acting on the index
i and a right one acting on the projected indexI of the harmonics:(

uI
i

)′ = 3 j
i uJ

j 6
I
J , 3 ∈ SU(N)L , 6 ∈ SU(N)R. (3.1)

In particular, the charge operators (2.24) of SU(N)R act on the harmonics as
follows:

mK uI
i = (δKI − δKN)uI

i , mK ui
I = −(δKI − δKN)ui

I . (3.2)

The harmonics satisfy the following SU(N) defining conditions:

uI
i ui

J = δ I
J ,

u ∈ SU(N): uI
i u j

I = δ j
i ,

εi1···i N u1
i1 · · ·uN

i N
= 1. (3.3)
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3.1.2. Harmonic Functions

A basic assumption of the harmonic approach to the coset SU(N)/[U(1)]N−1

is that any harmonic function is homogeneous under the action of [U(1)R]N−1, that
is, it is an eigenfunction of the charge operatorsmI ,

mI f
K1···Kq

L1···Lr
(u) = (δK1 I − δK1N − δL1 I + δL1N + · · ·) f

K1···Kq

L1···Lr
(u) (3.4)

(note that the projections (charges)K1 · · · Kq; L1 · · · Lr are not necessarily all
different). Thus the harmonic function effectively depends on the (N2− 1)− (N −
1)= N(N − 1) real coordinates of the coset SU(N)/[U(1)]N−1. This description
of the coset is global and coordinateless. The function (3.4) is given by its harmonic
expansion on the coset (hence the term “harmonic space”). In our SU(N) covariant
notation this expansion is [U(1)R]N−1 covariantand SU(N)L invariant. To give a
simple example, consider the caseN = 2 and the harmonic function

f 1(u) = f i u1
i + f i jk u1

i u1
j u

2
k + · · ·

+ f i1···i n+1 j1··· jnu1
i1 · · ·u1

in+1
u2

j1 · · ·u2
jn + · · · . (3.5)

Note that each term in the expansion has the same overall U(1)R charge 1. The
first coefficient f i is in the fundamental of SU(2)L , and the following ones are
symmetric in all of their indices (either becauseu1

i u1
j is symmetric ini and j or

because the antisymmetrization ofu1
i u2

j reduces it to a preceding term in (3.5)),
thus realizing irreps of SU(2)L of isospinn+ 1/2. As a second example, consider
the function

f 1
2 (u) ≡ f 11 f i j u1

i u1
j + f i jkl u1

i u1
j u

1
ku2

l + · · · . (3.6)

This time the overall charge is even, therefore the irreps of the expansion carry
integer isospin.

We remark that the irreducible products of harmonics play the rˆole of the
familiar spherical harmonics in the caseN = 2, where the coset SU(2)/U(1)∼ S2

(see Galperinet al. (1984) for details).
The aboveN = 2 examples are generalized to anyN as follows.12 Consider

first a function of the type

f

1 · · ·1︸ ︷︷ ︸
m1

2 · · ·2︸ ︷︷ ︸
m2 ...

N − 1 · · · N − 1︸ ︷︷ ︸
mN−1 (u), m1 ≥ m2 ≥ . . . ≥ mN−1. (3.7)

Note that the charges form a sequence corresponding to the canonical structure of
a Young tableau. This tableau defines the smallest irrep of SU(N)L that one finds
in the expansion. All the remaining irreps are obtained by the following procedure.
Denote the HWS of the smallest irrep by its Dynkin labels,|a1, . . . , aN−1〉 and that
of any irrep present in the expansion by|A1, . . . , AN−1〉. The vector|a1, . . . , aN−1〉
12We are grateful to P. Sorba for help in developing this argument.
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appears in the multiplet generated by the HWS|A1, . . . , AN−1〉so it can be obtained
by the action of the lowering operators of SU(N)L :

|a1, . . . , aN−1〉 =
(
t2
1

)n1
(
t3
2

)n2 · · · (t N
N−1

)nN−1
∣∣A1, . . . , AN−1

〉
. (3.8)

Here we only use the simple roots; the ordering in (3.8) is of no importance for our
argument. From the SU(N) algebra we easily find the following relations between
the two sets of Dynkin labels:

Ak = ak + 2nk − nk−1− nk+1 ≥ 0, k = 1, . . . , N − 1. (3.9)

Note that the coefficients in (3.9) form the Cartan matrix of SU(N). The total
number of boxes of the Young tableaux (i.e., number of indices of the coefficients,
see later) is given by

M =
N−1∑
k=1

k Ak = m+ NnN−1. (3.10)

Thus one finds anN − 1-parameter family of irreps where the choice of the pa-
rametersnk is limited only by the requirementsAk ≥ 0.

As an illustration of the preceding discussion, look at the first term in the
expansion of the function (3.7):

f i1···im1 j1··· jm2 ···k1···kmN−1 u1
i1 · · ·u1

im1
u2

j1 · · ·u2
jm2
· · ·uN−1

k1
· · ·uN−1

kmN−1
. (3.11)

Unlike the simple SU(2) examples above, here the coefficientsf are not necessarily
irreducible under SU(N)L . Indeed, they only possess the symmetry associated
with each type of harmonic projection, but no antisymmetrization between any
two different projections has been performed. Comparing the term (3.11) to the
general case (3.9) we can say that in (3.11) the total number of indices (boxes in a
Young tableau) isM = m, so what is left is theN − 2-parameter family of irreps
corresponding tonN−1 = 0.

The general term in the expansion of the function (3.7) is obtained from (3.11)
by multiplying it by the chargeless harmonic monomialu1

i1
· · ·uN

i N
(the total anti-

symmetrization of the indicesi1, . . . , i N results in an SU(N)L singlet, so it should
be eliminated):

f

1 · · ·1︸ ︷︷ ︸
m1

2 · · ·2︸ ︷︷ ︸
m2 ...

N − 1 · · · N − 1︸ ︷︷ ︸
mN−1 (u)

=
∞∑

nN−1=0

f i1···i M (u1)m1+nN−1 · · · (uN−1)mN−1+nN−1(uN)nN−1. (3.12)

We usenN−1 from (3.8) as the expansion parameter. Each term in (3.12) has a
coefficient with a total number of indicesM given by (3.10). This coefficient is
decomposed into a set of US(N)L irreps according to the rule (3.9).
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If the charges ([U(1)R]N−1 projections) of the harmonic function do not appear
in the canonical order (3.7), then one should reorder the indices 1, 2,. . . , N so that
they can label a Young tableau. For instance, theN = 4 function f 122233should be
rewritten asf 222331, so it corresponds to the Young tableau (3, 2, 1). If a complete
set ofN different projections is present, it can be suppressed, that is, theN = 4
function f 11234≡ f 1. Finally, if the function carries lower indices (projections
of the complex conjugate fundamental representation), they should be converted
into sets ofN − 1 upper indices, for example, theN = 4 function f 1

4 ≡ f 1123 or
f 12
1 ≡ f 12234≡ f 2.

3.1.3. Harmonic Derivatives

The harmonic derivatives are operators that respect the defining relations (3.3):

∂ I
J = uI

i

∂

∂uJ
i

− ui
J

∂

∂ui
I

− 1

N

N∑
K=1

δ I
J

(
uK

i

∂

∂uK
i

− ui
K

∂

∂ui
K

)
. (3.13)

They act on the harmonics as follows:

∂ I
JuK

i = δK
J uI

i −
1

N
δ I

JuK
i , ∂ I

Jui
K = −∂ I

K ui
J +

1

N
δ I

Jui
K . (3.14)

Note that we prefer to treatuI
i and ui

I as independent variables subject to the
constraints (3.3).

Clearly, the derivatives∂ I
J are the generators of the group SU(N)R acting on

the [U(1)R]N−1 projected indices of the harmonics. The assumption (3.4) is then
translated into the requirement that the harmonic functionsf (u) are eigenfunctions
of the diagonal derivatives∂ I

I that count the U(1)R charges:(
∂ I

I − ∂N
N

)
f

K1···Kq

L1···Lr
(u) = (δK1 I − δK1N − δL1 I + δL1N + · · ·

)
f

K1···Kq

L1···Lr
(u). (3.15)

Then the independent harmonic derivatives on the coset are theN(N − 1)/2 com-
plex derivatives∂ I

J , I < J corresponding to the raising operators of SU(N)R (or
their conjugates∂ I

J , I > J corresponding to the lowering operators of SU(N)R).
From the preceding discussions, it follows that the harmonic differential

conditions

∂ I
J f

K1···Kq

L1···Lr
(u) = 0, I < J (3.16)

impose severe constraints on the harmonic function. Indeed, if the function is of
the type (3.7), it is reduced to just one harmonic monomial giving rise to an SU(N)
irrep whose HWS is labeled by the charges. Any other harmonic function subject
to the condition (3.16) must vanish.

As an example, takeN = 2 and the functionf 1(u) (3.5) subject to the
constraint

∂1
2 f 1(u) = 0⇒ f 1(u) = f i u1

i (3.17)
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since this is the only term in the expansion (3.5) that automatically satisfies the
condition (3.17). So, the harmonic function is reduced to a doublet of SU(2).
Similarly, for N = 4 the function f 12(u) is reduced to the 6of SU(4). Indeed,
the constraints∂2

3 f 12(u) = ∂3
4 f 12(u) = 0 ensure thatf 12(u) depends onu1 and

u2 only, f 12(u) = f i j u1
i u2

j . Then the constraint∂1
2 f 12(u) = f i j u1

i u1
j = 0 implies

f i j = − f j i . A harmonic function that vanishes if subject to the constraint (3.16)
is, for example, inN = 2, f1(u) ≡ f 2(u), since no term in its expansion can satisfy
the condition∂1

2 f 2(u) = 0.
Note that not all of the derivatives∂ I

J , I < J are independent, as follows from
the SU(N) algebra. The independent ones,

∂1
2, ∂2

3, . . . , ∂N−1
N (3.18)

correspond to the simple roots of SU(N). Then the constraint (3.16) is
equivalent to

∂ I
I+1 f

K1···Kq

L1···Lr
(u) = 0, I = 1, . . . , N − 1. (3.19)

We remark that the coset SU(N)/U(1)N−1 can be parametrized byN(N −
1)/2 complex coordinates. In our context this amounts to making a choice of the
harmonic matrixuI

i such that the group [U(1)R]N−1 is identified with [U(1)L ]N−1

⊂ SU(N)L . Then the harmonic derivatives become Cartan’s covariant derivatives
on the coset. The constraints (3.16) take the form of covariant Cauchy–Riemann
analyticity conditions. For this reason we can call the set of constraints (3.16)
(or (3.19)) harmonic (H)analyticity conditions. The above argument shows that
H analyticity is equivalent to defining a HWS of SU(N), that is, it is the SU(N)
irreducibility condition on the harmonic functions.

3.2. (N, p,q) Harmonic Superfields

The main purpose of introducing harmonic variables is to be able to define
manifestly SU(N) covariant superfields living in the G-analytic superspaces (2.38).
This is done following the example of the chiral superfields. There we replaced
the condition (2.11) by the differential chirality constraint (2.14). In the case of
(N, p, q) analyticity we have to replace conditions (2.39) by analogous differential
constraints. The crucial point now is to let the superfield depend on the harmonic
variables and obtain the adequate [U(1)]N−1 projections with the help of harmonic
variables:

DI
α8(x, θ , θ̄ , u) = D̄α̇

J8(x, θ , θ̄ , u) = 0 (3.20)

where

DI
α = Di

αuI
i , D̄α̇

J = D̄α̇
i ui

J , 1≤ I ≤ P, N − q + 1≤ J ≤ N. (3.21)
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The derivatives appearing in (3.20) anticommute (see (2.16)), therefore there exists
a G-analytic basis in superspace,

xµA = xµ − i (θ1σ
µθ̄1+ · · · + θpσ

µθ̄ p − θN−q+1σ
µθ̄N−q+1− · · · − θNσ

µθ̄N),

θαI = θαi ui
I , θ̄ α̇ I = θ̄ α̇i uI

i , (3.22)

where these derivatives become justDI
α = ∂/∂θαI , D̄α̇J = −∂/∂θ̄ α̇J. Consequently,

in this basis the analytic superfield (3.20) becomes an unconstrained function of
N − p θs andN − q θ̄s, as well as of the harmonic variables:

8(xA, θp+1, . . . θN , θ̄1, . . . , θ̄N−q, u). (3.23)

Let us now turn to the harmonic dependence in (3.23). In principle, each
component in theθ expansion of the superfield is a harmonic function having an
infinite harmonic expansion of the type (3.12). If we want to deal with a finite set of
fields, we have to impose a harmonic irreducibility condition of the type (3.16) (or
the equivalent subset (3.19)). However, in the G-analytic basis (3.22) the harmonic
derivatives become covariant,DI

J . In particular, the derivatives

DI
J = ∂ I

J + 2i θJσ
µθ̄ I ∂µ − θJ∂

I + θ̄ I ∂̄J , 1≤ I ≤ N − q, p+ 1≤ J ≤ N
(3.24)

acquire space-time derivative terms. In the next section we shall see that this has
important consequences on a G-analytic superfield subject to the additional H
analyticity constraints

DI
J8

[a1,...,aN−1] (xA, θp+1, . . . , θN , θ̄1, . . . , θ̄N−q, u) = 0, 1≤ I < J ≤ N.
(3.25)

Here we have indicated the SU(N) representation carried by the superfield.

3.3. (N, p,q) Conformal Superfields

So far in this section we have only discussed G-analytic superfields as rep-
resentations of Poincar´e supersymmetry. From the analysis of Section 2 we know
that superconformal invariance yields additional restrictions, in particular, on the
SU(N) irrep carried by the superfield. Adapting the arguments of Section 2, one
finds that (3.20) implies the following harmonic conditions (even if we do not
impose the SU(N) irreducibility conditions (3.25)):

DI
I+18

[a1,...aN−1] = DI
I+18

[a1,...,aN−1] = 0,

1≤ I ≤ p− 1 and N − q + 1≤ I ≤ N − 1. (3.26)

These two subsets of raising and lowering operators of SU(N) generate the algebra
of SU(p)× SU(q). In the spirit of the coset construction of Section 2 this means
that we have added the factor SU(p)× SU(q) to the denominator of the harmonic
coset. In other words, a conformally covariant (N, p, q) superfield lives not only
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in a smaller superspace, but also in a smaller harmonic space as compared to our
initial coset SU(N)/[U(1)]N−1. From Section 2 we also know that the Dynkin
labels of such a superfield are restricted (see (2.41)). To summarize, a G-analytic
conformal superfield has the form

8[0,...,0,ap,...,aN−q ,0,...,0](xA, θp+1, . . . , θN , θ̄1, . . . , θ̄N−q, u) (3.27)

and lives in the harmonic coset

SU(N)

[U(1)]N−p−q+1× SU(p)× SU(q)
for p ≥ 2, q ≥ 2;

SU(N)

[U(1)]N−q × SU(q)
for p = 0, 1, q ≥ 2; (3.28)

SU(N)

[U(1)]N−p × SU(p)
for p ≥ 2, q = 0, 1;

SU(N)

[U(1)]N−1
for p = 0, 1 and q = 0, 1.

This effective reduction of the harmonic coset has been pointed out in Howe
and Leeming (1994) and Hartwell and Howe (1995a,b). For example, in the par-
ticular case

8[0,...,0,ap,0,...,0,aN−q ,0,...,0](xA, θp+1, . . . , θN , θ̄1, . . . , θ̄N−q, u)⇒

u ∈ SU(N)

S(U(p)× U(q)× U(N − p− q))
. (3.29)

Note that in the limiting casesN = p+ q andN = p+ q + 1 the two cosets (3.28)
and (3.29) coincide.

4. MASSLESS SUPERCONFORMAL MULTIPLETS

Massless multiplets are a particular class of superconformal multiplets. Their
components are fields carrying Lorentz spin (j1, 0),φα1···α2 j 1

(x) or (0, j2), φ̄α̇1···α̇2 j 2

(x) (all indices are symmetrized). In addition, they satisfy the massless field
equations

∂µσαα̇µ φαα2···α2 j 1
= 0, ∂µσαα̇µ φ̄α̇α̇2···α̇2 j 2

= 0 (4.1)

(or ¤φ = 0 in the case of spin (0, 0)). These massless fields are known
(Binegaret al., 1983) to form UIRs of the conformal algebra SU(2,2) if` = j + 1.
Consequently, the massless superconformal multiplets form UIRs of SU(2, 2/N)
(Binegar, 1986; Dobrev and Petkova, 1985, 1987).

In the language of AdS supersymmetry such multiplets are called “supersin-
gletons” (Günaydin and Warner, 1985; Nicolai and Sezgin, 1984).
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In this section we shall formulate the massless multiplets of SU(2, 2/N) first
in terms of ordinary superfields and then, for a subclass of them, in (N, k, N − k)
harmonic superspace.13

4.1. Massless Multiplets as Constrained Superfields

There exist three types of masslessN-extended superconformal multiplets.
They can be described in terms of ordinary constrained superfields (Howeet al.,
1981; Siegel, 1981).

(i). The first type is given by scalar superfields

Wi1···i k(xµ, θαi , θ̄ α̇i
)
, k = 1, . . . , N − 1 (4.2)

with k totally antisymmetrized indices of the fundamental representation of SU(N)

(i.e., carrying Dynkin labels [0,. . . , 0,
k
1, 0,. . . , 0]). They satisfy the following

constraints:

D( j
α Wi1)i2···i k = 0, (4.3)

D̄α̇{ j Wi1}i2···i k = 0 (4.4)

where ( ) means symmetrization and{ } means the traceless part. In the cases
N = 2, 3, 4 these constraints define the on-shellN = 2 matter (hyper)multiplet
(Sohnius, 1978) and theN = 3, 4 on-shell super-Yang–Mills multiplets (Sohnius,
1978). Their generalization to arbitraryN has been given in Howeet al.(1981) and
Siegel (1981) where it has also been shown that they describe on-shell massless
multiplets.

After rewriting the constraints (4.3) and (4.4) in harmonic superspace in
Section 4.2, we shall see that the above massless multiplets are superconformal if

` = 1, r = 2k

N
− 1. (4.5)

We also note their SU(N) quantum numbers

m1 = · · · = mk = 1, mk+1 = · · · = mN−1 = 0, m= k. (4.6)

(ii). The second type is given by a chiral scalar superfield

D̄α̇
i 8 = 0 (4.7)

satisfying the additional constraint (field equation)

DiαD j
α8 = 0. (4.8)

13The simplest example is provided by theN = 2 hypermultiplet (Galperinet al., 1984); the next
example is theN = 3, 4 on-shell SYM field-strength (Galperinet al., 1985; Kallosh, 1985; Rosly
and Schwarz, 1986; Galperinet al., 1987; Bandos, 1988); the generalization to the case (N, k, N − k)
was given in Hartwell and Howe (1995a,b).



P1: Vendor/FJT/FHQ/FPC/LOV/GIR/GFQ P2: FOM/GCO/LZX/FJQ/LOV/FNV P3: FLF/LOV/FJQ/LZX QC:

International Journal of Theoretical Physics [ijtp] PP088-298228 March 15, 2001 10:40 Style file version Nov. 19th, 1999

Superconformal Interpretation of BPS States in AdS Geometries 953

This superfield is an SU(N) singlet. The corresponding massless multiplet is su-
perconformal if (see Section 2.1)

` = −r = 1. (4.9)

Similarly, one can introduce an antichiral multiplet:

Di
α8̄ = 0, D̄i α̇Dα̇

j 8̄ = 0 (4.10)

with quantum numbers

` = r = 1. (4.11)

(iii). The third type is given by chiral superfields carrying external Lorentz
spin (j1, 0):

D̄α̇
i wα1···α2 j 1

= 0. (4.12)

Here the 2j1 spinor indices are totally symmetrized. These superfields are SU(N)
singlets. They satisfy the massless field equation

Diαwαα2···α2 j 1
= 0. (4.13)

As we have seen in Section 2.1, conformal supersymmetry requires that

` = −r = j1+ 1. (4.14)

Similarly, one can introduce antichiral superfields with Lorentz spin (0,j2):

Di
αw̄α̇1···α̇2 j 2

= 0, D̄α̇
i w̄α̇α̇2···α̇2 j 2

= 0 (4.15)

with

` = r = j2+ 1. (4.16)

It is straightforward to see that such massless representations coincide with the
massless supermultiplets ofN-extended Pioncar´e supersymmetry (for anN = 8
example see G¨unaydin and Marcus (1985).).

4.2. Type (i) Massless Multiplets as Analytic Superfields

Now, let us use the harmonic variables to covariantly project all the SU(N)
indices in the constraints (4.3) and (4.4) onto (U(1)R]N−1. For example, the
projection

W12···k = Wi1i2···i k (x, θ , θ̄ )u1
i1u

2
i2 · · ·uk

ik (4.17)

satisfies the constraints

D1
αW12···k = D2

αW12···k = · · · = Dk
αW12···k = 0, (4.18)

D̄α̇ k+1W12···k = D̄α̇ k+2W12···k = · · · = D̄α̇ NW12···k = 0 (4.19)
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whereDI
α = Di

αuI
i andD̄α̇ I = D̄α̇i ui

I . The first of them, Eq. (4.18), is a corollary of
the commuting nature of the harmonics variables, and the second one, Eq. (4.19),
of the defining conditions (3.3). In Eqs. (4.18) and (4.19) one recognizes the condi-
tions for G analyticity (3.20) of the type (N, k, N − k). As explained in Section 3.2,
in the appropriate G-analytic basis (3.22)W12···k becomes an unconstrained func-
tion of k θ̄s andN − k θs.

W12···k = W12···k(xA, θk+1, . . . , θN , θ̄1, . . . , θ̄k, u). (4.20)

It is important to realize that the G-analytic superfield (4.20) is an SU(N)
covariant object only because it depends on the harmonic variables. To recover the
original harmonic-independent but constrained superfieldWi1i2···i k (x, θ , θ̄ ) (4.3),
(4.4) we need to impose differential constraints involving the harmonic variables.
In Section 3.2 we have shown that they take the form of SU(N) irreducibility
conditions, Eq. (3.25). In this particular case they are

DI
j W

12···k = 0, 1≤ I < J ≤ N (4.21)

or the equivalent set

DI
I+1W12···k = 0, 1≤ I < J ≤ N − 1. (4.22)

In the initial real basis (2.7) of the full superspaceR4|2N,2N these constraints simply
mean that the superfield is a polynomial in the harmonics, as in (4.17). However,
in the G-analytic basis (3.22) the harmonic derivatives (3.24) contain space-time
derivatives. This leads to a number of constraints on the component fields. The
detailed analysis can be found in (Ferrara and Sokatchev, 2000), here we only
recall the final result:

W12···k = φ12···k

+ θ̄1
α̇ ψ̄

α̇ 23···k + · · · + θ̄k
α̇ ψ̄

α̇ 12···k−1

+ θαk+1χ
1···k k+1
α + · · · + θαNχ1···k N

α

+ θ̄1
α̇ θ̄

2
β̇
ψ̄

(α̇β̇) 3···k + · · · + θ̄k−1
α̇ θ̄k

β̇
ψ̄

(α̇β̇) 1···k−2

+ θαk+1θ
β

k+2χ
1···k k+1k+2
(αβ) + · · · + θαN−1θ

β

Nχ
1···k N−1 N
(αβ)

· · ·
+ θ̄1

α̇1
· · · θ̄k

α̇k
ψ̄

(α̇1···α̇k) + θα1
k+1 · · · θαN−k

N χ(α1···αN−k)

+ derivative terms. (4.23)

Here all the component fields belong to totally antisymmetric irreps of SU(N),
for example,φ12···k(x, u) = φ[i1i2···i k] (x)u1

i1
u2

i2
· · ·uk

ik
. Further, these fields satisfy

massless field equations of the type (4.1).
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We conclude this section by a remark concerning the conformal properties of
the above multiplets. The (N, k, N − k) analytic superfieldW12···k is characterized
by the SU(N) quantum numbersm1 = · · · = mk = 1, mk+1 = · · · = mN−1 = 0.
From Eqs. (2.40) we see that if

`k = 1, rk = 2k

N
− 1 (4.24)

W12···k realizes a massless UIR of the superconformal algebra.

5. UIRs OF D = 4 N-EXTENDED CONFORMAL SUPERSYMMETRY

In this section we shall show how the complete classification of UIRs of
SU(2, 2/N) found in Dobrev and Petkova (1985, 1987) (see also Binegar (1986)
and Morelet al. (1986) for the massless case) can be obtained by multiplying the
three types of massless superfields introduced in Section 4.

5.1. The Three Series of UIRs

The results of Dobrev and Petkova (1985, 1987)14 fall into three distinct
series. The simplest one (called series C in Ferrara and Sokatchev (2000)) is given
by the following conditions:

C: ` = m1, r = 2m

N
−m1, j1 = j2 = 0. (5.1)

We can construct the superfield realization of series C by multiplying massless
G-analytic superfields15 (“supersingletons”) of the type (4.20):

W[a1,...,aN−1] = (W1)a1(W12)a2 · · · (W12···N−1)aN−1. (5.2)

Since each factor in (5.2) satisfies the usual harmonic irreducibility constraints,
the same is true for the product:

DI
J W[a1,...,aN−1] = 0, 1≤ J < I ≤ N. (5.3)

As a result, the lowest component of the superfield (5.2) is an irrep of SU(N)
with Dynkin labels [a1, . . . , aN−1]. This is easily seen by realizing that (i) all
the SU(N) indices projected with harmonicsuK

i for a givenK are symmetrized;
(ii) their total number ismK =

∑N−1
i=K ai ; (iii) the harmonic conditions (5.3) remove

all symmetrizations between indices projected with different harmonicsuK
i and

14Our conventions differ from those of Dobrev and Petkova (1985, 1987) in the following sense:
r →−r, 2m/N → 2m1 − 2m/N.

15Series of operators obtained as powers of theN = 4 super-Yang–Mills field strength considered as
a G-analytic harmonic superfield were introduced in Howe and West (1996, 1997, 1999). They were
identified with short multiplets ofSU(2, 2/4) and their correspondence with the K–K spectrum of
IIB supergravity was established in Andrianopoli and Ferrara (1998a,b, 1999).
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uL
i . All this reproduces the structure of a Young tableau with numbers of boxes

(m1, m2, . . . , mN−1), that is, Dynkin labels [a1, . . . , aN−1].
Further, from (4.24) we find̀ =∑N−1

k=1 ak`k = m1 and r =∑N−1
k=1 akrk =

2m
N −m1, which exactly reproduces (5.1). Thus, we have proved that the complete

series C is realized by the product (5.2) of massless multiplets.
We remark that for a generic choice of the Dynkin labels the superfield (5.2)

is (N, 1, 1) G-analytic. However, if the firstp− 1 or the lastq − 1 (or both)
factors in (5.2) are absent, that is, if the corresponding Dynkin labels vanish, we
obtain further analyticity conditions of the type (N, p, q), in accord with (3.27).
We should mention that in Dobrev and Petkova (1985, 1987) a list of the possible
superconformal differential conditions on superfields is given. There one only finds
(N, 1, 1) G analyticity conditions, but this can be explained by the observation
made before.

The second series (called B in Ferrara and Sokatchev (2000)) is given by the
following conditions:

B: ` = −r + 2m

N
≥ 2+ 2 j1+ r + 2m1− 2m

N
, j2 = 0 (5.4)

(or j1→ j2, r →−r, 2m
N → 2m1− 2m

N ). It can be obtained by multiplying the
G-analytic massless superfield (5.2) by left-handed chiral ones as follows:

wα1···α2 j 1
8kW[a1,...,aN−1] (5.5)

wherek ≥ 0 is an integer. The first factor in (5.5) brings in the Lorentz spin (j1, 0).
The second factor adjusts the dimension and R charge of the series,

` = 1+ j1+m1+ k, r = −1− j1− k−m1+ 2m

N
, (5.6)

so that they exactly match (5.4). The conformal bound in (5.4) is obtained for
k = 0, that is, without employing any scalar chiral superfields. The alternative
series of this type is obtained by replacing chiral by antichiral superfields.

Finally, the most general series (called A in Ferrara and Sokatchev (2000)) is
given by the following conditions:

A: ` ≥ 2+ 2 j2− r + 2m

N
≥ 2+ 2 j1+ r +m1− 2m

N
(5.7)

(or j1→ j2, r →−r, 2m
N → 2m1− 2m

N ). This series is obtained by multiplying
together all possible types of massless superfields:

wα1···α2 j 1
w̄α̇1···α̇2 j 2

8k8̄sW[a1,...,aN−1] (5.8)

wherek ≥ s ≥ 0 are integers. This time we find

` = 2+ j1+ j2+m1+ k+ s, r = j2− j1− k+ s−m1+ 2m

N
, (5.9)
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which corresponds to (5.7). The two conformal bounds in (5.7) are saturated fors=
0 ork = s= 0, that is, without employing one or the other type (or both) of scalar
chiral superfields. These bounds correspond to superfields satisfying differential
constraints, as explained in Section 5.3. The alternative series is obtained by taking
s ≥ k ≥ 0.

Note that in the abstract series (5.4) and (5.7) the dimension` and R charger
can be any real numbers. To account for this, the powersk ands in (5.5) and (5.8)
will have to take noninteger values, although this might violate unitarity. This does
not happen for series C where` is always integer andr is rational.

One final remark concerns the unitarity of the above series of representations.
Earlier we mentioned that the massless multiplets (supersingletons) are known to
be UIRs of the superconformal algebra. Then it is clear that by multiplying them
as we did above we automatically obtain the series of UIRs.

5.2. Series Obtained From One Type of Supersingleton

In Section 5.1 we used all possible G-analytic supersingletonsW12···n with
1≤ n ≤ N − 1 to reproduce the complete series C. An alternative approach is
to use different realizations of the same type of supersingleton (i.e., for a fixed
value ofn). We presented a similar construction in Ferrara and Sokatchev (2000),
where we only considered the casen = N/2 (for evenN). The generalization is
straightforward. The result is a series of UIRs that is a particular case of the series
B above.

The supersingletonW12···n can be equivalently rewritten by choosing different
harmonic projections of its SU(N) indices and, consequently, different sets of G
analyticity constraints. This amounts to superfields of the type

WI1 I2···In
(
θJn+1, . . . , θJN , θ̄ I1, . . . , θ̄ In

)
(5.10)

whereI1, . . . , In andJn+1, . . . , JN are two complementary sets ofN indices. Each
of these superfields depends on 2N Grassmann variables, that is, half of the total
number of 4N. This is the minimal size of a G-analytic superspace, so we can say
that theWs are the “shortest” superfields (superconformal multiplets).

The idea now is to start multiplying different versions of theWs of the
type (5.10) (for a fixed value ofn) in order to obtain composite objects, depending
on various numbers of odd variables. The following choice ofWs and of the order
of multiplication covers all possible intermediate types of G analyticity:

A(p1, p2, . . . , pN−1)

= [W1···n(θn+1···N θ̄1···n)] p1+···+pN−1

× [W1···n−1n+1(θn n+2···N θ̄1···n−1n+1)] p2+···+pN−1

× [W1···n−1n+2(θn n+1n+3···N θ̄1···n−1n+2)] p3+···+pN−1
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· · ·
× [W1···n−1 N−1(θn···N−2 N θ̄

1···n−1 N−1)] pN−n+···+pN−1

× [W1···n−2n n+1(θn−1n+2···N θ̄1···n−2n n+1)] pN−n+1+···+pN−1

× [W1···n−3n−1n n+1(θn−2n+2···N θ̄1···n−3n−1n n+1)] pN−n+2+···+pN−1

· · ·
× [W13···n+1(θ2n+2···N θ̄13···n+1)] pN−2+pN−1

× [W23···n+1(θ1n+2···N θ̄23···n+1)] pN−1. (5.11)

The power
∑N−1

r=k pr of the kth W is chosen in such a way that each new
pr corresponds to bringing in a new realization of the same supersingleton. As a
result, at each step a newθ or θ̄ appears (they are underlined in (5.11)), thus adding
new odd dimensions to the G-analytic superspace. The only exception of this rule
is the second step at which both a newθ and a new̄θ appear. So, the series (5.11)
covers the cases (N, n, N − n), (N, n− 1, N − n− 1) and then all intermediate
cases up to (N, 1, 0).

The superfieldA(p1, p2, . . . , pN−1) should be submitted to the same H-
analyticity constraints as one would impose onW1···n alone,

DI
I+1A(p1, p2, . . . , pN−1) = 0, I = 1, 2,. . . , N − 1. (5.12)

This is clearly compatible with the G-analyticity conditions onA(p1, p2, . . . ,
pN−1) since they form a subset of these onW1···n. As before, H analyticity makes
A(p1, p2, . . . , pN−1) irreducible under SU(N).

By counting the number of occurrences of each projection 1, 2,. . . , N − 1
and the dimensions and R charges in (5.11), we easily find the relations

` =
N−1∑
k=1

kpk, m1 = `− pN−1, m= n`, r =
(

2n

N
− 1

)
`. (5.13)

If N = 2n this series has no R charge. IfpN−1 = 0 the product (5.11) represents
a G-analytic superfield and is thus a particular case of the series C. IfpN−1 ≥ 1 it
depends on allθs and on all̄θs butθ̄N , so it is a particular case of the series B (5.6)
with j1 = 0.

Finally, the Dynkin labels of the SU(N) irrep carried by the first component
of A(p1, p2, . . . , pN−1) are given below:

a1 = pN−2,

a2 = pN−3, . . . , an−2 = pN−n+1,

an−1 = (N − n− 2)
N−1∑

k=N−n+1

pk +
N−n∑
k=2

(k− 1)pk,
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an = p1,

an+1 = p2+
N−1∑

k=N−n+1

(k− N + n)pk,

an+2 = p3, . . . , aN−2 = pN−n−1,

aN−1 =
N−1∑

k=N−n

pk. (5.14)

A particular interesting case is obtained ifaN−1 = 0. This impliespN−n =
. . . = pN−1 = 0, so a1 = · · · = an−2 = 0. In other words, this is a G-analytic
superfield of the type (N, n− 1, 2). The remaining Dynkin labels arean−1 =∑N−n−1

k=2 (k− 1)pk, an = p1, an+1 = p2, . . . , aN−2 = pN−n−1. In general, none of
these labels vanishes, therefore the harmonic coset in which this (N, n− 1, 2)
superfield lives is not smaller than the expected one, SU(N)/[U(1)]N−n× SU(n−
1)×SU(2).

5.3. Shortness Conditions

In the AdS literature the term “short” applies to multiplets that do not reach
their maximal spin (equal to (j1+ N

2 , j2+ N
2 ) where (j1, j2) is the spin of the

first component) or which contain constrained fields like, for example, conserved
vectors. Our construction of the UIRs of SU(2, 2/N) in terms of supersingletons
allows us to easily find out when and what type of “shortness” condition takes
place.

To this end we recall that the building blocksw,8 andW are all constrained
superfields corresponding to the “ultrashort” supersingleton multiplets. They are
either G-analytic ((4.18), (4.19)) or chiral ((4.7), (4.12)). In addition, they satisfy
on-shell constraints that take the form of SU(N) irreducibility harmonic conditions
(4.21) in the G-analytic case or are of the type (4.8) or (4.13) in the chiral case.

Now, the most general product of chiral, antichiral, and G-analytic superfields
as in the series A (5.8) only satisfies the harmonic constraints (4.21) (recall that
w and8 are harmonic-independent). However, there are a number of particular
cases where some constraints on theθ dependence still take place.

(i) The product wα1···α2 j 1
W[a1,...,aN−1] satisfies the intersection of the

constraints (4.12), (4.13) of the factorw with the G-analyticity ones of the factor
W. In the generic case the latter is of the type (N, 1, 1), so we have

D̄α̇

N

(
wα1···α2 j 1

W[a1,...,aN−1]
) = 0, (5.15)

D1α
(
wαα2···α2 j 1

W[a1,...,aN−1]
) = 0. (5.16)

If W carries Dynkin labels like in (3.27), it is of the type (N, p, q) and, corre-
spondingly, we obtainq equations like (5.15) andp ones like (5.16).
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Similarly, the product8W[α1,...,αN−1] satisfies the constraints

D̄α̇

N

(
8W[a1,...,aN−1]

) = 0, (5.17)

D1αD1
α

(
8W[a1,...,aN−1]

) = 0 (5.18)

or more of the same type inW is (N, p, q) analytic.
(ii) The bilinear products of chiral with antichiral superfields are current-like

objects. They satisfy constraints which turn the top spin in the superfield into a
conserved “current.” The simplest example is the bilinear88̄:

DiαD j
α(88̄) = 0, D̄i α̇ D̄α̇

j (88̄) = 0. (5.19)

These constraints can be weakened if we multiply88̄ by a G-analytic factorW.
In this case only certain projections of (5.19) are preserved, for example,

D1αD1
α

(
88̄W[a1,...,aN−1]

) = D̄Nα̇ D̄α̇

N

(
88̄W[a1,...,aN−1]

) = 0. (5.20)

Yet another current-like object is the bilinearwα1···α2 j1
w̄α̇1···α̇2 j2

. It satisfies the
constraints

D̄α̇

i

(
wα1···α2 j 1

w̄α̇α̇2···α̇2 j 2

) = 0, (5.21)

Diα
(
wαα2···α2 j 1

w̄α̇1···α̇2 j 2

) = 0. (5.22)

As before, the productwα1···α2 j 1
w̄α̇1···α̇2 j 2

W[a1,...,aN−1] satisfies only the correspond-
ing projections of (5.21) and (5.22).

Similarly, the bilinearwα1···a2 j 1
8̄ satisfies the constraints

Diα
(
wαα2···α2 j 1

8̄
) = 0, (5.23)

D̄i α̇ D̄α̇

j

(
wα1···α2 j 1

8̄
) = 0. (5.24)

(iii) A different class of “short” objects are obtained from the most general
product (5.8) of series A either by settings= 0 or j2 = 0 ands= 1. In other
words, we take the currentlike bilinears above and multiply them by a BPS object
(i.e., product of a chiral and a G-analytic factor). The resulting objects satisfy the
constraints (for a genericW)

D̄α̇

N

(
wα1···α2 j 1

w̄α̇α̇2···α̇2 j 2
8kW[a1,...,aN−1]

) = 0, (5.25)

D̄Nα̇ D̄α̇

N

(
wα1···α2 j 1

8̄8kW[a1,...,aN−1]
) = 0. (5.26)

We call such objects “intermediate short.” Note that they saturate the first conformal
bound in (5.7). Intermediate short multiplets, as they are defined above, will also
occur ind = 6 andd = 3 (see Sections 6.4 and 7.4).
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5.4. BPS States of SU (2, 2/N)

Here we give a summary of the SU(2, 2/N) multiplets that correspond to BPS
states.16 They are realized in terms of superfields that do not depend on at least
one spinor coordinate. There are three distinct ways to obtain such multiplets.

5.4.1. (p, q) BPS States

Superfields that do not depend on the firstp θs and the lastq θ̄s are obtained
by multiplying G-analytic objects:

p+ q

2N
BPS:W[0,...,0,ap,ap+1,...,aN−q ,0,...,0](θp+1, . . . , θN , θ̄1, . . . , θ̄N−q)

= (W12···p)ap(W12···p+1)ap+1 · · · (W12···N−q)aN−q (5.27)

where

1≤ p, q ≤ N − 1, p+ q ≤ N. (5.28)

Note that the fraction of supersymmetry preserved by a (p, q) BPS state ranges as
follows:

1

N
≤ p+ q

2N
≤ 1

2
. (5.29)

The two end points are obtained forp = q = 1 and forp+ q = N.
Such states have the firstp− 1 and the lastq − 1 SU(N) Dynkin labels

vanishing. The remaining quantum numbers are

` =
N−q∑
k=p

ak, j1 = j2 = 0, r =
N−q∑
k=p

(
2k

N
− 1

)
ak. (5.30)

Generically, such superfields live in the harmonic space

SU(N)

[U(1)]N−p−q+1× SU(p)× SU(q)
. (5.31)

If a subset of the Dynkin labels vanish, for instance,

ap+m = ap+m+1 = · · · = aN−q−n = 0, p+ q +m+ n ≤ N,

the coset (5.31) is further restricted to

SU(N)

[U(1)]m+n × SU(p)× SU(q)× SU(N − p− q −m− n+ 2)
. (5.32)

16Note that such BPS states have a close resemblance to BPS Poincar´e multiplets in five dimensions
(Hull, 2000), as expected by a limiting procedure.
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5.4.2. (0, q) BPS States

Superfields that do not depend on the lastq θ̄s (or, alternatively, on the first
p θs) are obtained by multiplying G-analytic objects by left- (or right-) handed
chiral ones:

q

2N
BPS: W

[a1,a2,...,aN−q ,0,...,0]
α1···α2 j 1

(
θ1, . . . , θN , θ̄1, . . . , θ̄N−q

)
= wα1···α2 j 1

8s(W1)a1(W12)a2 · · · (W12···N−q)aN−q (5.33)

wheres ≥ 0 is an integer and

1≤ q ≤ N − 1. (5.34)

Note that the fraction of supersymmetry preserved by a (0,q) BPS state ranges as
follows:

1

2N
≤ q

2N
≤ N − 1

2N
. (5.35)

Such states have the lastq − 1 SU(N) Dynkin labels vanishing. The remaining
quantum numbers are

` = 1+ j1+ s+
N−q∑
k=p

ak, j2 = 0, r = −1− j1− s+
N−q∑
k=p

(
2k

N
− 1

)
ak.

(5.36)
Generically, such superfields live in the harmonic space

SU(N)

[U(1)]N−q × SU(q)
. (5.37)

If a subset of the Dynkin labels vanish, for instance,

ai = 0, 1≤ n ≤ N − q − 1,

the coset (5.31) is further restricted to

SU(N)

[U(1)]N−q−n × SU(q)× SU(n+ 1)
. (5.38)

5.4.3. Chiral BPS States

These are described by superfields that do not depend on all of theθ̄s (or,
alternatively, on theθs), that is, which are left- (or right-) handed chiral:

1

2
BPS: Wα1···α2 j 1

(θ1, . . . , θN) = wα1···α2 j 1
8s. (5.39)

They are SU(N) singlets. The remaining quantum numbers are:

` = 1+ j1+ s, j2 = 0, r = −1− j1− s. (5.40)

The chiral superfields are harmonic-independent.
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6. THE SIX-DIMENSIONAL CASE

The method described above can also be applied to the superconformal al-
gebras OSp(8*/2N) in six dimensions. We will first examine the consequences
of G-analyticity and conformal supersymmetry and find out the relation to BPS
states. Then we will construct UIRs of OSp(8*/2N) by multiplying supersingle-
tons. The results exactly match the general classification of UIRs of OSp(8*/2N)
of Minwalla (1998). Some of the results relevant to the casesN = 1, 2 have already
been presented in Ferrara and Sokatchev (2000).

6.1. The Conformal Superalgebra OSp(8*/2N) and Grassmann Analyticity

The part of the conformal superalgebra OSp(8*/2N) relevant to our discus-
sion is {

Qi
α, Qj

β

} = 2Äi j γ
µ
αβPµ, (6.1){

Sαi , Sβ j
} = 2Äi j γ αβµ Kµ, (6.2){

Qi
α, Sβ j

} = iÄi j (γ µν)α
βMµν + 2δβα (4Ti j − iÄi j D), (6.3)[

D, Qi
α

] = i

2
Qi
α, [D, Sαi ] = − i

2
Sαi , (6.4)

[
Ti j , Qk

α

] = −1

2

(
Äki Q j

α +Äk j Qi
α

)
, (6.5)

[Ti j , Tkl ] = 1

2

(
ÄikTl j +Äi l Tk j +Ä jkTli +Ä j l Tki

)
. (6.6)

Here Qi
α are the generators of Poincar´e supersymmetry carrying a right-handed

chiral spinor indexα = 1, 2, 3, 4 of the Lorentz group SU*(4)∼ SO(5, 1) (gen-
eratorsMµν) and an indexi = 1, 2,. . . , 2N of the fundamental representation of
the R symmetry group USp(2N) (generatorsTi j = T ji ); Sβ j are the generators of
conformal supersymmetry carrying a left-handed chiral spinor index;D is the gen-
erator of dilations,Pµ of translations andKµ of conformal boosts. It is convenient
to make the nonstandard choice of the symplectic matrixÄi j = −Ä j i with nonva-
nishing entriesÄ1 2N = Ä2 2N−1 = · · · = ÄN N+1 = 1. The chiral spinors satisfy
a pseudoreality condition of the typeQi

α = Äi j Qβ

j cβα wherec is a 4× 4 unitary
“charge conjugation” matrix. Note that the generatorsM, P, K , D form the lie
algebra of SO(8*)∼ SO(2, 6) and the generatorsQ andS form an SO(8*) chiral
spinor.

The standard realization of this superalgebra makes use of the superspace

R6|8N = OSp(8∗/2N)

{K , S, M, D, T} = (xµ, θαi ) (6.7)



P1: Vendor/FJT/FHQ/FPC/LOV/GIR/GFQ P2: FOM/GCO/LZX/FJQ/LOV/FNV P3: FLF/LOV/FJQ/LZX QC:

International Journal of Theoretical Physics [ijtp] PP088-298228 March 15, 2001 10:40 Style file version Nov. 19th, 1999

964 Ferrara and Sokatchev

whereθαi is a left-handed spinor. Unlike the four-dimensional case, here chirality
is not an option but is already built in. The only way to obtain smaller superspaces
is through Grassmann analyticity. We begin by imposing a single condition of
G-analyticity (cf. Eq. (2.20)):

q1
α8(x, θ ) = 0, (6.8)

which amounts to considering the coset

A6|4(2N−1) = OSp(8∗/2N)

{K , S, M, D, T, Q1} = (xµ, θα1,2,...,2N−1) (6.9)

(note that with our conventionsθα1 = θα2N , . . . , θαN = θαN+1, θα N+1 = −θαn . . . ,
θα 2N = −θα1 ). From the algebra (6.1)–(6.6) we obtain

mµν = 0, (6.10)

t1 1 = t1 2 = · · · = t1 2N−1 = 0, (6.11)

4t1 2N + ` = 0. (6.12)

Equation (6.10) implies that the superfield8must be a Lorentz scalar. To interpret
Eqs. (6.11) and (6.12), we need to split the generators of USp(2N) into raising
operators (corresponding to the positive roots):

Tk 2N−l , k = 1, . . . , N, l = k, . . . , 2N − k (simple if l = k); (6.13)

[U(1)]N charges:

Hk = −2Tk 2N−k+1, k = 1, . . . , N; (6.14)

the remaining generators are lowering operators (corresponding to the negative
roots). The Dynkin labelsak of a USp(2N) irrep are defined as follows:

ak = Hk − Hk+1, k = 1, . . . , N − 1, aN = HN , (6.15)

so that, for instance, the generatorQ1 is the HWS of the fundamental irrep
(1, 0,. . . , 0).

Now it becomes clear that (6.11) is part of the USp(2N) irreducibility con-
ditions, whereas (6.12) relates the conformal dimension to the sum of the Dynkin
labels:

` = 2
N∑

k=1

ak. (6.16)

Let us denote the highest-weight UIRs of the OSp(8*/2N) algebra by

D(`; J1, J2, J3; a1, . . . , aN)

where` is the conformal dimension,J1, J2, J3 are the SU*(4) Dynkin labels and
ak are the USp(2N) Dynkin labels of the first component. Then the G-analytic
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superfields defined previously are of the type

8(θ1,2,...,2N−1)⇔ D
(

2
N∑

k=1

ak; 0, 0, 0;a1, . . . , aN

)
. (6.17)

The next step is to add the generatorQ2
α to the superspace coset denominator:

A6|4(2N−2) = OSp(8∗/2N)

{K , S, M, D, T, Q1, Q2} = (xµ, θα1,2,...,2N−2). (6.18)

This implies the new constraints

4t2 2N−1+ ` = 0⇒ a1 = 0, (6.19)

t2 2N = 0. (6.20)

Note that the vanishing of the lowering operatort2 2N means that the subalgebra
SU(2)⊂USp(2N) formed byt1 2N−1, t2 2N andt1 2N ,−t2 2N−1 acts trivially on the
particular USp(2N) irreps. This is equivalent to settinga1 = 0, as in (6.19). Thus,
the new G-analytic superfields are of the type

8(θ1,2,...,2N−2)⇔ D
(

2
N∑

k=2

ak; 0, 0, 0; 0,a2, . . . , aN

)
. (6.21)

From (6.1) it is clear that we can go on in the same manner until we remove
half of theθs, namelyθN+1, . . . , θ2N . Each time we have to set a new Dynkin label
to zero. We can summarize by saying that the superconformal algebra OSp(8*/2N)
admits the following short UIRs corresponding to BPS states:

p

2N
BPS: D

(
2

N∑
k=p

ak; 0, 0, 0; 0,. . . , 0,ap, . . . , an

)
, p = 1, . . . , N. (6.22)

6.2. Supersingletons

There exist three types of massless multiplets in six dimensions corresponding
to ultrashort UIRs (supersingletons) of OSp(8*/2N) (see, e.g., G¨unaydin and
Takemae (1999) for the caseN = 2). All of them can be formulated in terms
of constrained superfields as follows.

(i) The first type is described by a superfieldW{i1···in}(x, θ ), 1≤ n ≤ N, which
is antisymmetric and traceless in the external USp (2N) indices (for evenn one
can impose a reality condition). It satisfies the constraint (see Howeet al. (1983)
and Park (1999)).

D(k
α W{i1)i2···in} = 0 ⇒ D(2; 0, 0, 0; 0,. . . , 0,an = 1, 0,. . . , 0), (6.23)
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where the spinor covariant derivatives obey the supersymmetry algebra{
Di
α, D j

β

} = −2iÄi j γ
µ
αβ∂µ. (6.24)

The components of this superfield are massless fields. In the caseN = n = 1 this
is the on-shell (1, 0) hypermultiplet and forN = n = 2 it is the on-shell (2, 0)
tensor multiplet (Howeet al., 1983; Bergshoeffet al., 1986).

(ii) The second type is described by a (real) superfield without external indices,
w(x, θ ) obeying the constraint

D(i
[αD j )

β]w = 0 ⇒ D(2; 0, 0, 0; 0,. . . , 0). (6.25)

(iii) Finally, there exists an infinite series of multiplets described by superfields
with n totally symmetrized external Lorentz spinor indices,w(α1···αn) (x, θ ) (they
can be made real in the case of evenn) obeying the constraint

Di
[βw(α1]···αn) = 0 ⇒ D(2+ n/2;n, 0, 0; 0,. . . , 0). (6.26)

As shown in Ferrara and Sokatchev (2000), the six-dimensional massless
conformal fields only carry reps (J1, 0) of the little group SU(2)× SU(2) of a
lightlike particle momentum. This result is related to the analysis of conformal
fields ind dimensions (Siegel, 1989; Angelopoulos and Laoues, 1998). This fact
implies that massless superconformal multiplets are classified by a single SU(2)
and USp (2N) R symmetry and are therefore identical to massless super-Poincar´e
multiplets in five dimensions. Some physical implication of the above circumstance
have recently been discussed in Hull (2000), where it was suggested that certain
strongly coupledd = 5 theories effectively become six-dimensional.

6.3. Harmonic Superspace

The massless multiplets (i) and (ii) admit an alternative formulation in har-
monic superspace (see Howeet al. (1985), Zupnik (1986a,b), and Howe (1999) for
N = 1, 2). The advantage of this formulation is that the constraints (6.23) become
conditions for G-analyticity. We introduce harmonic variables describing the coset
USp(2N)/[U(1)]N :

u ∈ USp(2N): uI
i ui

J = δ I
J , uI

i Ä
i j uJ

j = ÄI J , uI
i = (ui

I )
∗. (6.27)

Here the indicesi and j belong to the fundamental representation of USp(2N)
and I and J are labels corresponding to the [U(1)]N projections. The harmonic
derivatives

DI J = ÄK (I uJ)
i

∂

∂uk
i

(6.28)

form the algebra of USp(2N)R (see (6.6)) realized on the indicesI and J of the
harmonics.
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Let us now project the defining constraint (6.23) with the harmonicsuK
k u1

i1
· · ·

un
in

, K = 1, . . . , n:

D1
αW12···n = D2

αW12···n = · · · = Dn
αW12···n = 0 (6.29)

whereDK
α = Di

αuK
i andW12···n = W{i1···in}u1

i1
· · ·un

in
. Indeed, the constraint (6.23)

now takes the form of a G-analyticity condition. In the appropriate basis in su-
perspace the solution to (6.29) is a short superfield depending on part of the odd
coordinates:

W12···n(xA, θ1, θ2, . . . , θ2N−n, u). (6.30)

In addition to (6.29), the projected superfieldW12···n automatically satisfies the
USp(2N) harmonic irreducibility conditions

DK2N−K W12 = 0, K = 1, . . . , N (6.31)

(only the simple roots of USp(2N) are shown). The equivalence between the
two forms of the constraint follows from the obvious properties of the harmonic
productsuK

[kuK
i ] = 0 andÄi j uK

i uL
j = 0 for 1≤ K < L ≤ n. The harmonic con-

straints (6.31) make the superfield ultrashort.
Finally, in case (ii), projecting the constraint (6.25) withuI

i uI
j , where I =

1, . . . , N (no summation), we obtain the condition

DI
αDI

βw = 0. (6.32)

It implies that the superfieldw is linear in each projectionθα I .

6.4. Series of UIRs of OSp(8*/2N) and Shortening

It is now clear that we can realize the BPS series of UIRs (6.22) as products
of the different G-analytic superfields (supersingletons) (6.29).17 BPS shortening
is obtained by setting the firstp− 1 USp(2N) Dynkin labels to zero:
p

2N
BPS: W[0,...,0,ap,...,aN ] (θ1, θ2, . . . , θ2N−p) = (W1···p)ap · · · (W1···N)aN (6.33)

(note that even ifa1 6= 0 we still have 1/2N shortening).
We remark that our harmonic coset USp(2N)/[U(1)]N is effectively re-

duced to
USp(2N)

U(p)× [U(1)]N−p
(6.34)

in the case ofp/2N BPS shortening (just as it happened in four dimensions). Such
a smaller harmonic space was used in (Howe, 1999) to formulate the (2, 0) tensor
multiplet.

17As a bonus, we also prove the unitarity of these series, since they are obtained by multiplying massless
unitary multiplets.
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A study of the most general UIRs of OSp(8*/2N) (similar to the one of
Dobrev and Petkova (1985, 1987) for the case of SU(2, 2/N) is presented in
Minwalla (1998). We can construct these UIRs by multiplying the three types of
supersingletons, (6.33)–(6.35).

wα1···αm1
wβ1···βm2

wγ1···γm3
wkW[a1,...,aN ] (6.35)

wherem1 ≥ m2 ≥ m3 and the spinor indices are arranged so that they form an
SU*(4) UIR with Young tableau (m1, m2, m3) or Dynkin labelsJ1 = m1−m2,
J2 = m2−m3, J3 = m3. Thus we obtain four distinct series:

A) ` ≥ 6+ 1

2
(J1+ 2J2+ 3J3)+ 2

N∑
k=1

ak;

B) J3 = 0, ` ≥ 4+ 1

2
(J1+ 2J2)+ 2

N∑
k=1

ak;

C) J2 = J3 = 0, ` ≥ 2+ 1

2
J1+ 2

N∑
k=1

ak;

D) J1 = J2 = J3 = 0, ` = 2
N∑

k=1

ak. (6.36)

The superconformal bound is saturated whenk = 0 in (6.35). Note that the values
of the conformal dimension we can obtain are “quantized” since the factorwk has
` = 2k andk must be a nonnegative integer to ensure unitarity. With this restric-
tion Eq. (6.36) reproduces the results of Minwalla (1998). However, we cannot
comment on the existence of a “window” of dimensions 2+ 1

2 J1+ 2
∑N

k=1 ak ≤
` ≤ 4+ 1

2 J1+ 2
∑N

k=1 ak conjectured in Minwalla (1998).18

In the generic case the multiplet (6.35) is “long,” but for certain special
values of the dimension some shortening can take place (Minwalla, 1998). We can
immediately identify all these short multiplets. First of all, case D corresponds to
BPS shortening. In the other cases let us first setai = 0, that is, no BPS multiplets
appear in (6.35). Then saturating the bound in case A (i.e, settingk = 0) leads to
the shortening condition (see (6.26)):

εδαβγ Di
δ

(
wα···αm1

wβ···βm2
wγ ···γm3

) = 0→ ` = 6+ 1

2
(J1+ 2J2+ 3J3). (6.37)

Next, in case B we have two possibilities: either we saturate the bound (k = 0) or

18In a recent paper (Ferrara and Fronsdal, ) the UIRs of the six-dimensional conformal algebra SO(2,6)
have been classified. Note that the superconformal bound in case A (with allai = 0) is stronger that
the purely conformal unitarity bounds found in Ferrara and Fronsdal (2000).
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we use just one factor,w (k = 1). Using (6.25) and (6.26), we find

εδγαβDi
γ

(
wα···αm1

wβ···βm2

) = 0→ ` = 4+ 1

2
(J1+ 2J2); (6.38)

εδγαβD(i
δ D j )

γ

(
wwα···αm1

wβ···βm2

) = 0→ ` = 6+ 1

2
(J1+ 2J2). (6.39)

Similarly, in case C withJ1 6= 0 we have three options, namely, settingk = 0→
` = 2+ 1

2 J1 (which corresponds to the supersingleton defining constraint (6.26)
or k = 1, 2, which gives:

εδγβαD(i
γ D j )

β

(
wwα···αm1

) = 0→ ` = 4+ 1

2
J1. (6.40)

εδγβαD(i
δ D j

γ Dk)
β

(
w2wα···αm1

) = 0→ ` = 6+ 1

2
J1. (6.41)

Finally, in case C withJ1 = 0 we can take the scalar supersingleton (6.25) itself,
that is, setk = 1→ ` = 2, or setk = 2, 3:

εδγβαD(i
γ D j

βDk)
α (w2) = 0→ ` = 4, (6.42)

εδγβαD(i
δ D j

γ Dk
βDl )

α (w3) = 0→ ` = 6. (6.43)

Introducing USp(2N) quantum numbers into these shortening conditions is
achieved by multiplying the short multiplets by a BPS object. The new short
multiplets satisfy the corresponding USp(2N) projections of Eqs. (6.25), (6.26),
(6.37)–(6.43). We call such objects “intermediate short.”

7. THE THREE-DIMENSIONAL CASE

In this section we carry out the analysis of thed = 3, N = 8 superconformal
algebra OSp(8/4,R) in a way similar to the above. Some of the results have
already been presented in Ferrara and Sokatchev (2000). As in the previous cases,
our results could easily be extended to OSp (N/4,R) superalgebras with arbitrary
N. The N = 2 and N = 3 cases were considered in Fabbriet al. (2000) and
Fréet al. (1999).

7.1. The Conformal Superalgebra OSp(8/4,R) and Grassmann Analyticity

The part of the conformal superalgebra OSp(8/4,R) relevant to our discussion
is given below: {

Qi
α, Qj

β

} = 2δi j γ
µ
αβPµ, (7.1)
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{
Qi
α, Sj

β

} = δi j Mαβ + 2εαβ(Ti j + δi j D), (7.2)[
Ti j , Qk

α

] = i
(
δki Q j

α − δk j Qi
α

)
, (7.3)[

Ti j , Tkl
] = i (δikT jl + δ j l T ik − δ jkT il − δi l T jk). (7.4)

Here we find the following generators:Qi
α of N = 8 Poincaré supersymmetry

carrying a spinor indexα = 1, 2 of thed = 3 Lorentz group SL (2,R) ∼SO (1, 2)
(generatorsMαβ = Mβα) and a vector19 index i = 1, . . . , 8 of the R symmetry
group SO(8) (generatorsTi j = −T ji ); Si

α of conformal supersymmetry;Pµ, µ =
0, 1, 2, of translations;D of dilations.

The standard realization of this superalgebra makes use of the superspace

R3|16 = OSp(8/4,R)

{K , S, M, D, T} = (xµ, θαi ). (7.5)

To study G analyticity we need to decompose the generatorsQi
α under [U(1)]4 ⊂

SO(8). Besides the vector representation 8v of SO(8) we are also going to use the
spinor ones, 8s and 8c. In this context we find it convenient to introduce the four
subgroups U(1) by successive reductions: SO(8)→ SO(2)× SO(6)∼ U(1) ×
SU(4)→ [SO(2)]2 × SO(4)∼ [U(1)]2 × SU(2)× SU(2)→ [SO(2)]4 ∼ [U(1)]4.
Denoting the four U(1) charges by±, (±), [±], and {±}, we decompose the 3
eight-dimensional representations as follows:

8v: Qi → Q±±, Q(±±), Q[±]{±}, (7.6)

8s: φa→ φ+(+)[±] , φ−(−)[±] , φ+(−){±}, φ−(+){±} (7.7)

8c: σ ȧ→ σ+(+){±}, σ−(−){±}, σ+(−)[±] , σ−(+)[±] (7.8)

The definition of the charge operatorsHi , i = 1, 2, 3, 4, can be read off from the
corresponding projections of the relation (7.2):{

Q++α , S−−β
} = 1

2
Mαβ + εαβ

(
D − 1

2
H1

)
,

{
Q(++)
α , S(−−)

β

} = 1

2
Mαβ + εαβ

(
D − 1

2
H2

)
,

{
Q[+]{+}
α , S[−]{−}

β

} = 1

2
Mαβ + εαβ

(
D − 1

2
H3− 1

2
H4

)
,

{
Q[+]{−}
α , S[−]{+}

β

} = −1

2
Mαβ − εαβ

(
D − 1

2
H3+ 1

2
H4

)
. (7.9)

19Since SO(8) has 3 eight-dimensional representations, 8v, 8s, and 8c related by triality, the choice
which one to ascribe to the supersymmetry generators is purely conventional. To be consistent with
the otherN-extendedd = 3 supersymmetries where the odd generators always belong to the vector
representation, we prefer to put an 8v index i on the supercharges.
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In this notation we have[
H1, Q±±α

] = [H2, Q(±±)
α

] = ±2i Q±±α ,[
H3, Q[±]{±}] = [H4, Q[±]{±}] = ±i Q[±]{±}. (7.10)

Let us denote a quasi-primary superconformal field of the OSp(8/4,R) alge-
bra by the quantum numbers of its HWS:

D(`; J; a1, a2, a3, a4) (7.11)

where` is the conformal dimension,J is the Lorentz spin andai are the Dynkin
labels (see, e.g., Frappatet al. (2000)) of the SO(8) R symmetry. In fact, in our
scheme the natural labels are the four chargeshi (the eigenvalues ofHi ). They are
related to the Dynkin labels as follows:

h1 = 2(a1+ a2)+ a3+ a4,

h2 = 2a2+ a3+ a4,

h3 = a3, h4 = a4, (7.12)

or, inversely,

a1 = 1

2
(h1− h2), a2 = 1

2
(h2− h3− h4), a3 = h3, a4 = h4. (7.13)

A HWS |ai 〉 of SO(8) is by definition annihilated by the positive simple roots of
the SO(8) algebra:

T [++] |ai 〉 = T {++}|ai 〉 = T++(−−)|ai 〉 = T (++)[−]{−}|ai 〉 = 0. (7.14)

To build G analytic superspaces we have to add one or more projections ofQi
α

to the coset denominator. In choosing the subset of projections we have to make
sure that (i) they anticommute among themselves and (ii) the subset is closed
under the action of the raising operators of SO(8) (7.14). Then we have to examine
the consistency of the vanishing of the chosen projections with the conformal
superalgebra (7.9). Thus we find the following sequence of G analytic superspaces
corresponding to BPS states:

1

8
BPS:

{q++α 8 = 0→
8(θ++, θ (±±), θ [±]{±})
D(a1+ a2+ 1

2(a3+ a4); 0;a1, a2, a3, a4)
(7.15)

1

4
BPS:

{q++α 8 = q(++)
α 8 = 0→

8(θ++, θ (++), θ [±]{±})
D(a2+ 1

2(a3+ a4); 0; 0,a2, a3, a4)
(7.16)
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3

8
BPS:

{q++α 8 = q(++)
α 8 = q[+]{+}

α 8 = 0→
8(θ++, θ (++), θ [+]{±}, θ [−]{+})
D( 1

2(a3+ a4); 0; 0, 0,a3, a4)
(7.17)

1

2
BPS (type I):

{q++α 8 = q(++)
α 8 = q[+]{±}

α 8 = 0→
8(θ++, θ (++), θ [+]{±})
D( 1

2(a3; 0; 0, 0,a3, 0)
(7.18)

1

2
BPS (type II):

{q++α 8 = q(++)
α 8 = q[±]{+}

α 8 = 0→
8(θ++, θ (++), θ [±]{+})
D( 1

2(a4; 0; 0, 0, 0,a4)
(7.19)

Note the existence of two types of 1/2 BPS states because of the two possible
subsets of projections ofqi closed under the raising operators of SO(8) (7.14).

We remark that in the cases 1/4, 3/8, and 1/2, the states are annihilated by
some of the lowering operators of SO(8). This means that certain subalgebras of
SO(8) act trivially on them:

1

4
: SU (2)↔ {T++(−−), T−−(++), H1− H2 (7.20)

3

8
: SU (3)↔

{
T++(−−), T−−(++), H1− H2

T (++)[−]{−}, T (−−)[+]{+}, H2− H3− H4
(7.21)

1

2
: SU (4)I ↔

{T++(−−), T−−(++), H1− H2

T (++)[−]{−}, T (−−)[+]{+}, H2− H3− H4

T {++}, T {−−}, H4

(7.22)

1

2
: SU (4)I I ↔

{T++(−−), T−−(++), H1− H2

T (++)[−]{−}, T (−−)[+]{+}, H2− H3− H4

T [++] , T [−−] , H3

(7.23)

These properties are equivalent to the restrictions on the possible values of the
SO(8) Dynkin labels in (7.15)–(7.19). Note that the existence of two types of 1/2
BPS states can be equivalently explained by the two possible ways to embed SU(4)
in SO(8), as shown in (7.22) and (7.23).

7.2. Supersingletons and Harmonic Superspace

The supersingletons are the simplest OSp(8/4,R) representations of the type
(7.18) or (7.19) and correspond toD(1/2; 0; 0, 0, 1, 0) orD(1/2; 0; 0, 0, 0, 1). The
existence of two distinct types ofd = 3 N = 8 supersingletons has first been
noted in Günaydinet al. (1986). Each of them is just a collection of eight Dirac
supermultiplets (Fronsdal, 1982) made out of “Di” and “Rac” singletons (Flato
and Fronsdal, 1978, 1980, 1981, 1986).
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To realize the supersingletons in superspace we note that the HWS in the two
supermultiplets above has spin 0 and the Dynkin labels of the 8s or 8c of SO(8),
correspondingly. Therefore we take a scalar superfield8a(xµ, θαi ) (or

∑
ȧ(xµ, θαi ))

carrying an external 8s indexa (or an 8c indexȧ). These superfields are subject to
the following on-shell constraints20 :

Type I: Di
α8a = 1

8
γ i

aḃγ̃
j

ḃc
D j
α8c; (7.24)

Type II: Di
α6ȧ = 1

8
γ̃ i

ȧbγ
j

bċD j
α6ċ. (7.25)

The two multiplets consist of a massless scalar in the 8s (8c) and spinor in the 8c
(8s).

The harmonic superspace description of these supersingletons can be realized
by taking the harmonic coset21

SO(8)

[SO(2)]4
∼ Spin(8)

[U (1)]4
. (7.26)

Since SO(8)∼ Spin(8) has three inequivalent fundamental representations, 8s, 8c,
8v, following Galperinet al. (1992) we introduce three sets of harmonic variables:

uA
a , wȦ

ȧ , vI
i (7.27)

where A, Ȧ, and I denote the decompositions of an 8s, 8c, and 8v index, cor-
respondingly, into sets of four U(1) charges (see (7.6)–(7.8)). Each of the 8×
8 real matrices (7.27) belongs to the corresponding representation of SO(8)∼
Spin(8). This implies that they are orthogonal matrices (this is a peculiarity of
SO(8) because of triality):

uA
a uB

a = δAB, wȦ
ȧ wḂ

ȧ = δ ȦḂ, vI
i vJ

i = δ I J . (7.28)

These matrices supply three copies of the group space, and we only need one
to parametrize the harmonic coset. The condition that identifies the three sets of

20See also Howe (1999) for the description of a supersingleton related to ours by SO(8) triality.
Superfield representations of otherOSp(N/4) superalgebras have been considered in Ivanov and
Sorin (1980) and Fabbriet al. (2000).

21A formulation of the above multiplet in harmonic superspace has been proposed in Howe (1999)
(see also Zupnik and Khetselius (1988) and Howe and Leeming (1994) for a general discus-
sion of three-dimensional harmonic superspaces). The harmonic coset used in Howe (1999) is
Spin (8)/U (4). Although the supersingleton itself does indeed live in this smaller coset (see
Section 7.5.4), its residual symmetryU (4) would not allow us to multiply different realizations
of the supersingleton. For this reason we prefer from the very beginning to use the coset (7.26) with
a minimal residual symmetry.
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harmonic variables is22

uA
a (γ I )AȦwȦ

ȧ = vI
i (γ i )aȧ. (7.29)

Further, we introduce harmonic derivatives (the covariant derivatives on the
coset (7.26))

DI J = uA
a (γ I J )AB ∂

∂uB
a

+ wȦ
ȧ (γ I J )ȦḂ ∂

∂wḂ
ȧ

+ v[ I
i

∂

∂vJ]
i

. (7.30)

They respect the algebraic relations (7.28) and (7.29) among the harmonic variables
and form the algebra of SO(8), realized on the indices,A, Ȧ, I of the harmonics.

We now use the harmonic variables for projecting the supersingleton defining
constraints (7.24) and (7.25). Using the relation (7.29) it is easy to show that the
projections8+(+)[+] and6+(+){+} satisfy the following G-analyticity constraints:

D++8+(+)[+] = D(++)8+(+)[+] = D[+]{±}8+(+)[+] = 0, (7.31)

D++6+(+){+} = D(++)6+(+){+} = D[+]{±}6+(+){+} = 0 (7.32)

whereDI
α = vI

i Di
α,8A = uA

a8a and6 Ȧ = wȦ
ȧ6ȧ. This is the superspace realiza-

tion of the 1/2 BPS shortening conditions (7.18) and (7.19). In the appropriate
basis in superspace8+(+)[+] and6+(+){+} depend on different halves of the odd
variables as well as on the harmonic variables:

Type I: 8+(+)[+]
(
xA, θ++, θ (++), θ [+]{±}, u, w

)
(7.33)

Type II: 6+(+){+}(xA, θ++, θ (++), θ [±]{+}, u, w
)
. (7.34)

In addition to the G analyticity constraints (7.31) and (7.32), the on-shell
superfields8+(+)[+] and6+(+){+} are subject to the SO(8) irreducibility harmonic
conditions obtained from (7.14) by replacing the SO(8) generators by the corre-
sponding harmonic derivatives. The combination of the latter with Eq. (7.31) is
equivalent to the original constraint (7.24).

It should be stressed that8+(+)[+] and6+(+){+} automatically satisfy ad-
ditional harmonic constraints involving lowering operators of SO(8) (cf. (7.22)
and (7.23)). As mentioned earlier, this means that the supersingleton harmonic
superfields effectively live in the smaller harmonic coset Spin(8)/U(4).

7.3. OSp(8/4,R) Supersingleton Composites

One way to obtain short multiplets of OSp(8/4,R) is to multiply different
analytic superfields describing the Type I supersingleton. The point is that pre-
viously we chose a particular projection of, for example, the defining constraint

22Although each of the three sets of harmonic variables depends on the same 28 parameters, we need
at least two sets to be able to reproduce all possible representations of SO(8).
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(7.24) that lead to the analytic superfield8+(+)[+] . We could have done this in a
variety of ways, each time obtaining superfields depending on different halves of
the total number of odd variables. Leaving out the 8v lowest weightθ−−, we can
have four distinct but equivalent analytic descriptions of the Type I supersingleton:

8+(+)[+]
(
θ++, θ (++), θ [+]{+}, θ [+]{−}),

8+(+)[−]
(
θ++, θ (++), θ [−]{+}, θ [−]{−}),

8+(−){+}(θ++, θ (−−), θ [+]{+}, θ [−]{+}),
8+(−){−}(θ++, θ (−−), θ [+]{−}, θ [−]{−}), (7.35)

Then we can multiply them in the following way:(
8+(+)[+]

)p+q+r+s(
8+(+)[−]

)q+r+s(
8+(−){+})r+s(

8+(−){−})s, (7.36)

thus obtaining three series of OSp(8/4,R) UIRs exhibiting 1/8, 1/4, or 1/2 BPS
shortening:

1

8
BPS: D

(
a1+ a2+ 1

2
(a3+ a4), 0;a1, a2, a3, a4

)
, a1− a4 = 2s ≥ 0;

1

4
BPS: D

(
a2+ 1

2
a3, 0; 0,a2, a3, 0

)
;

1

2
BPS: D

(
1

2
a3, 0; 0, 0,a3, 0

)
(7.37)

where

a1 = r + 2s, a2 = q, a3 = p, a4 = r. (7.38)

We see that multiplying only one type of supersingletons cannot reproduce
the general result of Section 7.1 for all possible short multiplets. Most notably, in
(7.37) there is no 3/8 series. The latter can be obtained by mixing the two types
of supersingletons:[

8+(+)[+]
(
θ++, θ (++), θ [+]{±})]a3

[
6+(+){+}(θ++, θ (++), θ [±]{+})]a4 (7.39)

(or the same with8 and6 exchanged). Counting the charges and the dimension,
we find exact matching with the series (7.17):

3

8
BPS: D

(
1

2
(a3+ a4); 0; 0, 0,a3, a4

)
. (7.40)

Further, mixing two realizations of Type I and one of Type II supersingletons, we
can construct the 1/4 series[

8+(+)[+]
]a2+a3

[
8+(+)[−]

]a2
[
6+(+){+}]a4, (7.41)
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which corresponds to (7.16):

1

4
BPS: D

(
a2+ 1

2
(a3+ a4); 0; 0,a2, a3, a4

)
. (7.42)

Finally, the full 1/8 series (7.15) (i.e., without the restrictiona1− a4 = 2s ≥ 0 in
(7.37)) can be obtained in a variety of ways.

In this section we have analyzed all short highest-weight UIRs of the OSp(8/4,
R) superalgebra whose HWSs are annihilated by part of the super-Poincar´e odd
generators. The number of distinct possibilities have been shown to correspond to
different BPS conditions on the HWS. When the algebra is interpreted on the AdS4

bulk, for which the 3d superconformal field theory corresponds to the boundary
M-2 brane dynamics, these states appear as BPS massive excitations, such as K–K
states or AdS black holes, of M-theory on AdS4× S7. Since in M-theory there is
only one type of supersingleton related to the M-2 brane transverse coordinates
(Duff, 1987, 1988), according to our analysis massive states cannot be 3/8 BPS
saturated, exactly as it happens in M-theory onM4× T7. Indeed, the missing
solution was also noticed in Duff and Liu (1999) by studying AdS4 black holes in
gaugedN = 8 supergravity. Curiously, in the ungauged theory, which is in some
sense the flat limit of the former, the 3/8 BPS states are forbidden (Ferrara and
Günaydin, 1998; Ferrara and Maldacena, 1998) by the underlying E7(7) symmetry
of N = 8 supergravity (Cremmer and Julia, 1979).

7.4. Series of UIRs of OSp(8/4,R)

In the cases of even dimensiond = 4, 6, we had supersingleton superfields
carrying eitherRsymmetry indices, Lorentz indices, or just conformal dimension.
Multiplying them we were able to reproduce the corresponding general series of
UIRs. In the case ofd = 3, the situation is different, since we have only two su-
persingletons carrying SO(8) spinor indices. Multiplying them we could construct
the short objects of the BPS type considered above. Yet, for reproducing the most
general UIRs (see Minwalla (1998)), we need short objects with spin but without
SO(8) indices. These arise in the form of conserved currents. The simplest one is
a Lorentz scalar and an SO(8) singletw of dimension` = 1. It can be realized
as a bilinear of two supersingletons of the same type, for example,w = 8a8a or
w = 6ȧ6ȧ. Using (7.24) or (7.25) one can show that it satisfies the constraint (a
non-BPS shortness condition)

Di
αD jαw = 1

8
δi j Dk

αDkaw. (7.43)

The other currents carry SL(2,R) spinor indices,wα1···α2 j , have dimensioǹ =
1+ J and satisfy the constraint (Park, 1999)

Diαwαα2···α2J = 0. (7.44)
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They can be constructed as bilinears of the two types of supersingletons (for half-
integer spin) or of two copies of the same type (for integer spin). For example, the
two lowest ones (J = 1/2 andJ = 1) are

wα = γ i
bḃ

(
Di
α8b6ḃ −8bDi

α6ḃ

)
, (7.45)

wαβ = Di
(α8a(γ i γ j )abD j

β)8
′
b + 32i (8a∂αβ8

′
a − ∂αβ8a8

′
a). (7.46)

They are easily generalized to

wα1···α2n+1 = γ i
bḃ

n∑
k=0

(−1)k (7.47)

(
∂(α1α2 · · · ∂α2k−1α2k Di

α2k+1
8b∂α2k+2α2k+3 · · · ∂α2n−1α2n)6ḃ

− ∂(α1α2 · · · ∂α2k−1α2k8b∂α2k+1α2k+2 · · · ∂α2n−1α2n Di
α2n+1)6ḃ

)
;

wα1···α2n =
n∑

k=0

(−1)k (7.48)

[
∂(α1α2 · · · ∂α2k−1α2k Di

α2k+1
8a(γ i γ j )abD j

α2k+2
∂α2k+3α2k+4 · · · ∂α2n−1α2n)8

′
b

+ 32i ∂(α1α2 · · · ∂α2k−1α2k8a∂α2k+1α2k+2 · · · ∂α2n−1α2n)8
′
a

]
(note that ifn = 2m the two supersingletons8a and8′a can be identical).

The generic “long” UIR of OSp(8/4,R) can now be obtained as a product of
all of the above short objects:

wα1···α2 j w
kBPS[a1, a2, a3, a4]. (7.49)

Here we have used the first factor to obtain the spin, the second one for the
conformal dimension and the BPS factor for the SO(8) quantum numbers. The
unitarity bound is given by

` ≥ 1+ J + a1+ a2+ 1

2
(a3+ a4) (7.50)

and is saturated ifk = 0 in (7.49). The object (7.49) is short if (i)J 6= 0 andk = 0
(then it satisfies the intersection of (7.44) with the BPS conditions); (ii)J = 0 and
k = 1 (then it satisfies the intersection of (7.43) with the BPS conditions); (iii)J =
0 andk = 0 (then it is BPS short). These results exactly match the classification
of Minwalla (1998).
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7.5. BPS States of OSp(8/4,R)

Here we give a summary of all possible OSp(8/4,R) BPS multiplets. Denot-
ing the UIRs by

D(`; J; a1, a2, a3, a4), (7.51)

where` is the conformal dimension,J is the spin, anda1, a2, a3, a4 are the SO(8)
Dynkin labels, we find four BPS conditions:

7.5.1.

1

8
BPS: q++α = 0. (7.52)

The corresponding UIRs are

D
(

a1+ a2+ 1

2
(a3+ a4); 0;a1, a2, a3, a4

)
(7.53)

and the harmonic coset is

Spin(8)

[U(1)]4
. (7.54)

If a2 = a3 = a4 = 0 this coset becomes Spin(8)/U(4).

7.5.2.

1

4
BPS: q++α = q(++)

α = 0. (7.55)

The corresponding UIRs are

D
(

a2+ 1

2
(a3+ a4); 0; 0,a2, a3, a4

)
(7.56)

and the harmonic coset is

Spin(8)

[U(1)]2× U(2)
. (7.57)

If a3 = a4 = 0 this coset becomes Spin(8)/U(1)× [SU(2)]3.

7.5.3.

3

8
BPS: q++α = q(++)

α = q[+]{+}
α = 0. (7.58)
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The corresponding UIRs are

D
(

1

2
(a3+ a4); 0; 0, 0,a3, a4

)
(7.59)

and the harmonic coset is

Spin(8)

U(1)× U(3)
. (7.60)

7.5.4.

1

2
BPS (type I): q++α = q(++)

α = q[+]{+}
α = q[+]{±}

α = 0; (7.61)

1

2
BPS (type II): q++α = q(++)

α = q[+]{+}
α = q[±]{+}

α = 0. (7.62)

The corresponding UIRs are

1

2
BPS (type I): D

(
1

2
a3; 0; 0, 0,a3, 0

)
; (7.63)

1

2
BPS (type II): D

(
1

2
a4; 0; 0, 0, 0,a4

)
. (7.64)

and the harmonic coset is

Spin(8)

U(4)
. (7.65)

8. CONCLUSIONS

Here we give a summary of the different types of BPS states that are realized
as products of supersingletons described by G-analytic harmonic superfields. We
shall restrict ourselves to the physically interesting cases of D3,M2, and M5

branes horizon geometry where only one type of such supersingletons appears.
This construction gives rise to a restricted class of the most general BPS states.

8.1. PSU (2, 2/4)

The BPS states are constructed in terms of theN = 4,d = 4 super-Yang-Mills
multiplet Wi j in three equivalent G analytic realizations:

(W12(θ3,4, θ̄
1,2))p+q+r (W13(θ2,4, θ̄

1,3))q+r (W23(θ1,4, θ̄
2,3))r . (8.1)
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BPS SU(4) Dimension Harmonic space

1
2 (0, p, 0) p SU(4)/S(U(2)× U(2))
1
4 (q, p, q) p+ 2q SU(4)/[U(1)]3

1
8 (q, p, q+ 2r) p+ 2q+ 3r SU(4)/[U(1)]3

(0, p, 2r) p+ 3r SU(4)/U(1)× U(2)

(0, 0, 2r) 3r SU(4)/U(3)

8.2. OSp(8*/4)

The BPS states are constructed in terms of the (2, 0)d = 6 tensor multiplet
W{i j } in two equivalent G-analytic realizations:

(W12(θ1,2)p+q(W13(θ1,3))q. (8.2)

BPS USp(4) Dimension Harmonic space

1
2 (0, p) 2p USp(4)/U(2)
1
4 (2q, p) 2p+ 4q USp(4)/[U(1)]2

(2q, 0) 4q USp(4)/U(2)

8.3. OSp(8/4,R)

The Type I BPS states are constructed in terms of theN = 8, d = 3 matter
multiplet 8a carrying an external 8s SO(8) spinor index in four equivalent G-
analytic realizations:

[
8+(+)[+]

(
θ++,(++),[+]{±})]p+q+r+s ×[

8+(+)[−]
(
θ++,(++),[−]{±})]q+r+s ×[

8+(−){+}(θ++,(−−),[±]{+})]r+s ×[
8+(−){−}(θ++,(−−),[±]{−})]s. (8.3)
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BPS SO(8) Dimension Harmonic space

1
2 (0, 0, p, 0) 1

2 p Spin(8)/U(4)
1
4 (0, q, p, 0) 1

2(p+ 2q) Spin(8)/U(2)× U(2)
1
8 (r + 2s, q, p, r) 1

2(p+ 2q + 3r + 4s) Spin(8)/[U(1)]4

The Type II BPS states are constructed in terms of theN = 8, d = 3 mat-
ter multiplet6ȧ carrying an external 8c SO(8) spinor index in four equivalent
G analytic realizations:[

6+(+){+}(θ++,(++),[±]{+})]p+q+r+s ×[
6+(+){−}(θ++,(++),[±]{−})]q+r+s ×[
6+(−)[+]

(
θ++,(−−),[+]{±})]r+s ×[

6+(−)[−]
(
θ++,(−−),[−]{±})]s. (8.4)

BPS SO(8) Dimension Harmonic space

1
2 (0, 0, 0, p) 1

2 p Spin(8)/U(4)
1
4 (0, q, 0, p) 1

2(p+ 2q) Spin(8)/U(2)× U(2)
1
8 (r+2s, q, r, p) 1

2(p+ 2q + 3r + 4s) Spin(8)/[U(1)]4
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